Semaine du 9 Décembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Montrer que si f est continue et injective sur un intervalle I alors f est strictement monotone sur I.
- 2. Énoncer et démontrer la proposition de dérivation d'une composée.

Exercice nº 2:

(Continuité) : Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction croissante telle que l'application $x \mapsto \frac{f(x)}{x}$ soit décroissante. Montrer que f est continue.

Exercice no 3:

(Continuité et dérivation) : Soit I un intervalle et $f: I \to \mathbb{C}$ une fonction dérivable ne s'annulant pas. On appelle dérivée logarithmique de f, la fonction $\frac{f'}{f}$.

- 1. Soit $f, g: I \to \mathbb{C}$ deux fonctions dérivables ne s'annulant pas. Déterminer la dérivée logarithmique de $f^p g^q$ où $(p, q) \in \mathbb{Z}^2$.
- 2. Lorsque f et g sont à valeurs réelles strictement positives, déterminer la dérivée logarithmique de $f^{\alpha}g^{\beta}$ où $(\alpha, \beta) \in \mathbb{R}^2$.
- 3. Soit $\varphi:[0,1]\to\mathbb{R}$ définie par $\varphi(x)=(1-x)^{\frac{3}{4}}x^{\frac{2}{3}}$. À l'aide de la dérivée logarithmique, étudier les variations de φ .

Semaine du 9 Décembre - Planche n° 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les proposition suivantes :

- 1. Théorème de dérivation des bijections réelles.
- 2. Dérivation d'un produit

Exercice nº 2:

(Continuité) : Soit $f: \mathbb{R} \to \mathbb{Z}$ une fonction continue. Montrer que f est constante.

Exercice no 3:

(Continuité et dérivation) : On considère la fonction f définie par : $f(x) = \sqrt{2 - \ln(x)}$.

- 1. Préciser l'ensemble de définition \mathcal{D}_f de f, puis dresser le tableau de variation de f.
- 2. Montrer que l'intervalle [1, e] est stable par f. En déduire l'existence d'un unique point fixe a pour f dans [1, e].
- 3. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$. Montrer que :

$$\forall n \in \mathbb{N}, |u_{n+1} - a| \le \frac{1}{2}|u_n - a|$$

4. En déduire que pour tout $n \in \mathbb{N}$, $|u_n - a| \leq \left(\frac{1}{2}\right)^n (e - 1)$ puis en déduire la limite de u_n .

Semaine du 9 Décembre - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes

- 1. Théorème de Rolle.
- 2. Théorème de la limite dérivée.

Exercice nº 2:

(Continuité) : Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue qui tend vers $+\infty$ en $\pm \infty$. Montrer que f possède un minimum.

Exercice nº 3:

(Continuité et dérivation) : Soit I un intervalle et $f: I \to I$ une fonction dérivable et $(u_n)_{n \in \mathbb{N}}$ une suite vérifiant $u_{n+1} = f(u_n)$ avec $u_0 \in I$. On suppose de plus que $(u_n)_{n \in \mathbb{N}}$ converge vers c et que |f'(c)| > 1.

- 1. On suppose que pour tout entier naturel n, on a $u_n \neq c$. Donner $\lim_{n \to +\infty} \frac{u_{n+1}-c}{u_n-c}$ et aboutir à une contradiction.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est stationnaire, égale à c à partir d'un certain rang.
- 3. Démontrer que la suite définie par $u_0=1$ et $u_{n+1}=4u_n(1-u_n)$ diverge.