Semaine du 20 Janvier - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Lemme de la base extraite/incomplète.
- 2. Théorème de la base extraite.

Exercice nº 2:

(Bases en dimension finie) : Soient (e_1, \ldots, e_n) et (e'_1, \ldots, e'_n) deux bases d'un \mathbb{R} -espace vectoriel E. Montrer qu'il existe $j \in \{1, \ldots, n\}$ tel que la famille $(e_1, \ldots, e_{n-1}, e'_j)$ soit encore une base de E.

Exercice no 3:

(Noyaux itérés) : Soit E un \mathbb{K} -espace vectoriel de dimension finie n, et $u \in \mathcal{L}(E)$.

- 1. Montrer qu'il existe $p \in \{0, ..., n\}$ tel que $\ker(u^{p+1}) = \ker(u^p)$. Dans la suite, on considère un tel indice p.
- 2. Montrer que:

$$\forall k \ge p, \ \ker(u^k) = \ker(u^p) \ \text{et} \ \operatorname{Im}(u^k) = \operatorname{Im}(u^p)$$

3. Montrer que $E = \ker(u^p) \oplus \operatorname{Im}(u^p)$.

Semaine du 20 Janvier - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Formule de Grassmann.
- 2. Théorème de la base incomplète.

Exercice nº 2:

(Hyperplans) : Soit E un \mathbb{K} -espace vectoriel de dimension finie n supérieure à 2. Soit H_1 et H_2 deux hyperplans de E distincts. Déterminer la dimension de $H_1 \cap H_2$.

Exercice no 3:

(Espaces vectoriels et rang) : Soit E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie, ainsi que $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$.

- 1. Montrer que : $rg(u) = rg(v \circ u) + dim(Im(u) \cap ker(v))$.

 Indication : On pourra appliquer la formule du rang à l'endomorphisme v restreint à un bon espace..
- 2. En déduire que $rg(v \circ u) \ge rg(v) + rg(u) \dim(F)$.
- 3. Montrer que $\dim(\ker(v \circ u)) \leq \dim(\ker(v)) + \dim(\ker(u))$.

Semaine du 20 Janvier - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer le lemme et la formule du rang.

Exercice nº 2:

(Espaces vectoriels) : Soient U, V et W trois sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel de dimension finie n.

- 1. On suppose $\dim(U) + \dim(V) > n$. Montrer que $U \cap V$ n'est pas réduit au vecteur nul.
- 2. On suppose $\dim(U) + \dim(V) + \dim(W) > 2n$. Que dire de l'espace $U \cap V \cap W$?

Exercice nº 3:

(Espaces vectoriels et rang) : Soit f un endomorphisme d'un espace vectoriel E de dimension finie n.

- 1. Démontrer que : $E = \operatorname{Im}(f) \oplus \ker(f) \Rightarrow \operatorname{Im}(f) = \operatorname{Im}(f^2)$.
- 2. Démontrer que : $Im(f) = Im(f^2) \Leftrightarrow \ker(f) = \ker(f^2)$.
- 3. Démontrer que : $\operatorname{Im}(f) = \operatorname{Im}(f^2) \Rightarrow E = \operatorname{Im}(f) \oplus \ker(f)$.