Semaine du 03 Février - Planche nº 1

Exercice no 1:

(Question de cours) : Énoncer et démontrer la propriété 12 : l'intersection de sous-groupes de G est un sous-groupe de G.

Exercice nº 2:

(Groupes): Montrer que

$${x + y\sqrt{3} \mid x \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1}$$

est un sous-groupe de (\mathbb{R}_+^*, \times) .

Exercice no 3:

(Suites récurrentes) : Étudier la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 \in \left[\frac{1}{3}; +\infty\right] \\ u_{n+1} = \sqrt{u_n - \frac{2}{9}} \end{cases}$$

Semaine du 03 Février - Planche nº 2

Exercice nº 1:

(Question de cours) : Énoncer et démontrer les proprietes 15 et 17 : image de l'élément neutre et de l'inverse dun élément par un morphisme de groupes, image directe et réciproque d'un groupe par un morphisme de groupes.

Exercice nº 2:

(Groupes) : Soit G le sous-ensemble de \mathbb{C}^{Ω} constitué des fonctions de Ω dans \mathbb{U} . Montrer que G est un groupe. (pour quelle loi?)

Exercice no 3:

(Suites - Exercice 43 banque CCINP) : Soit $x_0 \in \mathbb{R}$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = x_0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = \operatorname{Arctan}(u_n)$.

- 1. Démontrer que la suite (u_n) est monotone et déterminer, en fonction de la valeur de x_0 , le sens de variation de (u_n) .
- 2. Montrer que (u_n) converge et déterminer sa limite.
- 3. Déterminer l'ensemble des fonctions h, continues sur \mathbb{R} , telles que :

$$\forall x \in \mathbb{R}, h(x) = h(\operatorname{Arctan}(x))$$

Semaine du 03 Février - Planche nº 3

Exercice nº 1:

(Question de cours) : Énoncer et démontrer les propriétés 18 et 19 : caractérisations de l'injectivité et de la surjectivité, groupe des automorphismes de G.

Exercice nº 2:

(Groupes) : Pour $(a, b) \in \mathbb{C}^* \times \mathbb{C}$, on définit la fonction

$$f_{a,b}: z \in \mathbb{C} \mapsto az + b \in \mathbb{C}$$

On pose $G = \{f_{a,b} \mid (a,b) \in \mathbb{C}^* \times \mathbb{C}\}$. Montrer que G est un sous-groupe de $(\mathrm{Aut}(\mathbb{C}), \circ)$.

Exercice nº 3:

(Suites):

- 1. Montrer que pour $n \in \mathbb{N}^*$, l'équation $x^n + x^{n-1} + \cdots + x 1 = 0$ admet une unique solution strictement positive notée a_n .
- 2. Montrer que la suite $(a_n)_{n\in\mathbb{N}^*}$ est strictement décroissante.
- 3. Montrer que $\lim_{n\to+\infty} a_n = \frac{1}{2}$.