Semaine du 3 Février - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Lemme d'approximation d'une fonction continue sur un segment par une fonction en escalier.
- 2. Relation de Chasles pour I l'intégrale des fonctions en escaliers.

Exercice nº 2:

(Intégration) : Déterminer la limite suivante

$$\lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(x)}{x+n} \mathrm{d}x$$

Exercice nº 3:

(Intégration et trigonométrie..):

- 1. Montrer qu'il existe un unique $\alpha \in \mathbb{R}_+$ tel que $\operatorname{sh}(\alpha) = 1$.
- 2. On pose pour $n \in \mathbb{N}$, $I_n = \int_0^\alpha \operatorname{sh}(t)^n dt$. Déterminer le sens de variation de la suite $(I_n)_{n \in \mathbb{N}}$.
- 3. Justifier que $(I_n)_n$ converge. On ne cherchera pas à calculer sa limite pour l'instant.
- 4. Montrer que

$$\forall n \in \mathbb{N}, (n+2)I_{n+2} = \operatorname{ch}(\alpha) - (n+1)I_n$$

5. En déduire la limite de la suite $(I_n)_n$.

Semaine du 3 Février - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Encadrement d'une fonction continue par morceaux par deux fonctions en escalier.
- 2. Toute fonction continue par morceaux est bornée.

Exercice nº 2:

(Intégration) : Déterminer la limite suivante

$$\lim_{n \to +\infty} \int_0^{\pi} \frac{n \sin(x)}{x+n} \mathrm{d}x$$

Exercice no 3:

(Intégration) : Soit $g:[0,\pi]\to\mathbb{R}$ telle que

$$g(x) = \begin{cases} \frac{\pi - 1}{2}x & \text{pour } x \in [0, 1] \\ \frac{\pi - x}{2} & \text{pour } x \in]1, \pi] \end{cases}$$

- 1. Représenter le graphe de g sur $[0, \pi]$.
- 2. Calculer $\int_0^{\pi} g(t)^2 dt$.
- 3. Pour $n \in \mathbb{N}^*$, calculer $b_n = \int_0^{\pi} g(t) \sin(nt) dt$.

Semaine du 3 Février - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions précédentes :

- 1. Existence de la borne sup de A_f , de la borne inf de B_f et $\sup(A_f) = \inf(B_f)$.
- 2. Croissance de l'intégrale pour les fonctions continues par morceaux.

Exercice nº 2:

(Intégration) : Déterminer la limite suivante

$$\lim_{n \to +\infty} \int_0^1 \sqrt{1+x^n} \, \mathrm{d}x$$

Exercice no 3:

(Intégration) : Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{1+t+t^2} dt$.

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ est décroissante.
- 2. Calculer $I_n + I_{n+1} + I_{n+2}$ en fonction de n.
- 3. Montrer que pour $n \geq 2, \frac{1}{n+1} \leq 3I_n \leq \frac{1}{n-1}$.
- 4. En déduire la limite de nI_n quand $n \to +\infty$ et en déduire une équivalent de I_n quand $n \to +\infty$.