Semaine du 10 Février - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Formule de Taylor avec reste intégrale.
- 2. Formule pour la transposition d'un produit de matrices.

Exercice nº 2:

(Matrices) : Soit
$$a \in \mathbb{R}$$
 et $M = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$.

- 1. Montrer que M^2 est une combinaison linéaire de M et de I_3 .
- 2. En déduire que si $-a^2 a + 2 \neq 0$, alors M est inversible et précisér M^{-1} .
- 3. En discutant selon la valeur de a, résoudre le système $M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Exercice no 3:

(Divers) : Soit f et g deux fonctions continues sur [0,1] à valeurs dans $\mathbb R$

- 1. Rappeler le théorème de Heine.
- 2. Déterminer la limiter de la suite $\left(\frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right)g\left(\frac{k+1}{n}\right)\right)_{n\in\mathbb{N}^{*}}$

Semaine du 10 Février - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes :

- 1. Les sommes de Riemann associées à f convergent vers l'intégrale de f sur [a,b] si f est continue sur [a,b].
- 2. L'inverse de la transposée est égale à la transposée de l'inverse.

Exercice nº 2:

(Matrices): Pour $t \in \mathbb{R}$, on note M(t) la matrice $\begin{pmatrix} \operatorname{ch}(t) & \operatorname{sh}(t) \\ \operatorname{sh}(t) & \operatorname{ch}(t) \end{pmatrix}$.

- 1. Montrer que pour tous réels t_1, t_2 , on a $M(t_1)M(t_2) = M(t_1 + t_2)$.
- 2. Montrer que pour tout réel t, M(t) est inversible et préciser son inverse.
- 3. Que peut-on dire de l'ensemble $\{M(t), t \in \mathbb{R}\}.$

Exercice no 3:

(Intégration) : Calculer la limite suivante

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n+k^2}{n^3+k^3}$$

Semaine du 10 Février - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions précédentes :

- 1. Lemme technique pour la méthode des trapèzes
- 2. $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$.

Exercice nº 2:

(Matrices): Soient $m \in \mathbb{R}^*$. On note A la matrice $\begin{pmatrix} 0 & m & m^2 \\ m^{-1} & 0 & m \\ m^{-2} & m^{-1} & 0 \end{pmatrix}$.

- 1. Calculer A^2 et en déduire $(A+I_3)(A-2I_3)$.
- 2. On pose $B = \frac{1}{3}(A + I_3)$ et $C = \frac{1}{3}(A 2I_3)$. Préciser B^n et C^n pour tout $n \in \mathbb{N}^*$.
- 3. En déduire A^n en fonction de B, C et de $n \in \mathbb{N}^*$. (Ce résultat persiste pour n = 0? n = -1?)

Exercice no 3:

(Intégration) : Calculer la limite suivante

$$\lim_{n \to +\infty} \prod_{p=1}^{n} \left(n^2 \times p^{-\frac{4p}{n^2}} \right)$$