Semaine du 10 Mars - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Série de Riemann : critère de convergence.
- 2. Une matrice et sa transposée ont même rang.

Exercice nº 2:

Déterminer la nature de la série de terme général :

$$u_n = \frac{1}{\binom{2n}{n}}$$

Exercice no 3:

(Séries): Le but de cet exercice est de démontrer le critère dit de Raabe-Duhamel

- 1. Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de réels strictement positifs vérifiant $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Montrer que $u_n = O(v_n)$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

- a) On suppose $\alpha > 1$. À l'aide d'une comparaison à une série de Riemann, montrer que $\sum_{n \in \mathbb{N}} u_n$ converge.
- b) On suppose $\alpha < 1$. Montrer que $\sum_{n \in \mathbb{N}} u_n$ diverge.
- c) Étudier les deux cas suivants :

$$u_n = \frac{1}{n}$$
 et $u_n = \frac{1}{n \ln^2(n)}$

Que peut-on donc conclure du cas $\alpha = 1$?

3. Application : Déterminer la nature de la série de terme général

$$u_n = \frac{2 \times 4 \times \dots \times (2n)}{3 \times 5 \times \dots \times (2n+1)}$$

Semaine du 10 Mars - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Critère spécial des séries alternées.
- 2. Formule contravariante matricielle.

Exercice no 2:

(Nature d'une série) : Déterminer la nature de la série de terme général :

$$u_n = n \arctan\left(\frac{1}{n^4}\right)$$

Exercice no 3:

(Séries) : Le but de cet exercice est de découvrir ce qui est communément appelé la sommation (ou transformation) d'Abel et de voir quelques applications.

Soient $(a_n)_{n\geq 0}$ une suite de réels et $(b_n)_{n\geq 0}$ une suite de complexes. On note pour tout entier naturel $n, S_n = \sum_{k=0}^n a_k b_k$ et $B_n = \sum_{k=0}^n b_k$.

- 1. Pour $k \geq 1$, écrire b_k en fonction de certains termes de la suite $(B_n)_{n \in \mathbb{N}}$.
- 2. Montrer que pour tout entier naturel n non nul :

$$S_n = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

- 3. On suppose dorénavant que la suite $(B_n)_{n\in\mathbb{N}}$ est bornée et que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante de limite nulle.
 - a) Démontrer que la série $\sum_{k>0} (a_k a_{k+1})$ converge.
 - b) En déduire que la série $\sum_{n>0} a_n b_n$ converge.
 - c) Rappeler le critère des séries alternées, et déduire de ce qui précède une démonstration de celui-ci.
- 4. Applications : Dans cette question, $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - (a) Calculer pour *n* entier naturel non-nul, $\sum_{k=1}^{n} e^{ik\theta}$.
 - (b) Discuter en fonction du réel α la naturel de la série $\sum_{n\geq 1} \frac{e^{in\theta}}{n^{\alpha}}$.

Semaine du 10 Mars - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Théorème de convergence absolue
- 2. Formule de changement de bases

Exercice nº 2:

(Nature d'une série) : Déterminer la nature de la série de terme général :

$$u_n = \frac{\ln(n)}{n^3}$$

Exercice no 3:

(Séries) : On note dans cet exercice E l'ensemble de toutes les suites $(p_n)_{n\in\mathbb{N}}$ croissantes d'entiers naturels telles que $p_0 \geq 2$. Pour une suite $(p_n)_{n\in\mathbb{N}}$ appartenant à E, on s'intéresse à la série de terme

général
$$u_n = \frac{1}{p_0 p_1 \dots p_n}$$
. On notera $S_n = \sum_{k=0}^n u_n = \sum_{k=0}^n \frac{1}{\prod_{i=0}^k p_i}$

- 1. Commençons par étudier quelques cas particuliers :
 - a) Dans le cas où la suite $(p_n)_{n\in\mathbb{N}}$ est constante égale à 2. Étudier la nature de la série et en déduire la valeur de la somme.
 - b) Généraliser au cas d'une suite (p_n) constante égale à $p \geq 2$.
 - c) Supposons désormais que $p_n = n + 2$, Étudier la nature de la série et en déduire la valeur de la somme. Montrer que cette valeur appartient à l'intervalle [0, 1].
- 2. Dans le cas général, prouver que la série de terme général u_n est toujours convergente et que sa somme appartient à]0,1]. On notera désormais S(p) la somme associée de la série associée à la suite $(p_n)_{n\in\mathbb{N}}$.
- 3. Montrer que l'application $S: E \to]0,1]$ est une application injective (on pourra commencer par constater que, si $p_0 < q_0$ alors S(p) < S(q)).
- 4. Soit $x \in]0,1]$. On construit à partir de x, la suite $(y_n)_{n\in\mathbb{N}}$ de la façon suivante :

$$y_0 = x \text{ et } \forall n \ge 1, y_{n+1} = p_n y_n \text{ où } p_n = \left[1 + \frac{1}{y_n} \right]$$

- (a) Déterminer les premiers termes des suites $(y_n)_{n\in\mathbb{N}}$ et $(p_n)_{n\in\mathbb{N}}$ lorsque $x=\frac{3}{7}$. Calculer S(p) pour la suite $(p_n)_{n\in\mathbb{N}}$ obtenue.
- (b) Dans le cas général, montrer que $(y_n)_{n\in\mathbb{N}}$ est une suite décroissante d'éléments de]0,1].
- (c) En déduire que $(p_n)_{n\in\mathbb{N}}$ vérifie les hypothèses posées en début d'exercice.
- (d) Exprimer x en fonction de p_0, p_1, \ldots, p_n et y_n , et en déduire la valeur de S(p) pour ce $p = (p_n)_{n \in \mathbb{N}}$. En conclure que S est une application bijective de E dans]0,1].