Semaine du 14 Avril - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Formule de développement suivant une file.
- 2. $det(g \circ f) = (det g) \circ (det f)$.

Exercice nº 2:

(Déterminants) : Calculer le déterminant suivant :

$$\begin{vmatrix} 0 & 1 & 2 & \dots & n-1 \\ 1 & 0 & 1 & \ddots & \vdots \\ 2 & 1 & 0 & \ddots & 2 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ n-1 & \dots & 2 & 1 & 0 \end{vmatrix}$$

Exercice no 3:

(Déterminants) : Soit A une matrice carrée d'ordre n à coefficients réels telle que $A^2 = -I_n$.

- 1. Montrer que n est pair.
- 2. On suppose désormais que n=4 et on note f l'endomorphisme de \mathbb{R}^4 canoniquement associé à A.
 - (a) Montrer que si $x \in \mathbb{R}^4 \setminus \{0\}$, alors (x, f(x)) est une famille libre de \mathbb{R}^4 .
 - (b) Montrer qu'il existe e'_1 et e'_2 dans \mathbb{R}^4 tels que $\mathcal{B}' = (e'_1, f(e'_1), e'_2, f(e'_2))$ soit une base de \mathbb{R}^4 .
 - (c) En déduire det(A).

Semaine du 14 Avril - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Déterminant de Vandermonde : définition et calcul.
- 2. Une matrice et sa transposée ont même déterminant.

Exercice nº 2:

(Déterminants) : Calculer le déterminant d'ordre n suivant :

$$D_n(x) = \begin{vmatrix} x & a & \dots & a \\ a & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a \\ a & \dots & a & x \end{vmatrix}$$

Exercice no 3:

(Déterminants) : Soient a et b deux réels. Pour tout réel x, on pose :

$$P(x) = \begin{vmatrix} 1+x & a+x & a+x & a+x \\ b+x & 1+x & a+x & a+x \\ b+x & b+x & 1+x & a+x \\ b+x & b+x & b+x & 1+x \end{vmatrix}$$

- 1. Calculer P(-a) et P(-b).
- 2. Justifier qu'il existe m et p des réels tels que $P: x \mapsto mx + b$. (On ne cherchera pas à préciser m et p).
- 3. Dans le cas $a \neq b$, expliciter P(x) en fonction de a, b et x.
- 4. Traiter le cas a = b

Semaine du 14 Avril - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Définition et formule de la comatrice.
- 2. Corollaire pour le calcul de l'inverse.

Exercice nº 2:

(Déterminants) : Calculer le déterminant d'ordre n suivant :

$$D_n = \begin{vmatrix} 0 & 1 & \dots & \dots & 1 \\ -1 & 0 & 1 & \dots & 1 \\ \vdots & -1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ -1 & -1 & \dots & -1 & 0 \end{vmatrix}$$

Exercice no 3:

(Déterminants): Soient $n \in \mathbb{N}^*$, a_1, \ldots, a_n et b_1, \ldots, b_n des complexes tels que pour tout $(i, j) \in [1, n]^2$, $a_i + b_j \neq 0$. On pose alors $D_n = \det\left(\left(\frac{1}{a_i + b_j}\right)_{1 \leq i, j \leq n}\right)$.

- 1. Que peut-on dire de D_n si deux des a_i ou deux des b_j sont égaux?
- 2. On suppose maintenant que les a_i (respectivement les b_j) distincts deux à deux. On remplace dans le déterminant définissant D_n , a_n par X et on note F(X) le déterminant obtenu.
 - (a) Montrer que F est une fraction rationnelle.
 - (b) Que peut-on dire de son degré?
- 3. Justifier que F peut s'écrire sous la forme

$$F(X) = \frac{P(X)}{\prod_{j=1}^{n} (X + b_j)}$$

Que peut-on dire du degré de P?

4. Déterminer n-1 racines de P. En déduire une expression de D_n en fonction des a_i et des b_j .