Semaine du 19 Mai - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Produit de Cauchy de séries absolument convergentes.
- 2. Une boule ouverte est un ouvert.

Exercice nº 2:

(Familles sommables) : Soient $r \in [0, 1[$ et $\theta \in \mathbb{R}$, justifier l'existence et calculer $\sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta}$.

Exercice no 3:

(Familles sommables): On note $\ell^1(\mathbb{Z})$ l'ensemble des suites complexes $u=(u_n)_{n\in\mathbb{Z}}$ sommables.

- 1. Soient $u, v \in \ell^1(\mathbb{Z})$. Montrer que pour tout $n \in \mathbb{Z}$, la famille $(u_k v_{n-k})_{k \in \mathbb{Z}}$ est sommable.
- 2. Pour $u, v \in \ell^1(\mathbb{Z})$, on pose

$$(u \star v)_n = \sum_{k \in \mathbb{Z}} u_k v_{n-k}.$$

Montrer que $u \star v \in \ell^1(\mathbb{Z})$ et que

$$\sum_{n\in\mathbb{Z}} (u\star v)_n = \left(\sum_{n\in\mathbb{Z}} u_n\right) \left(\sum_{n\in\mathbb{Z}} v_n\right).$$

- 3. Montrer que la loi \star ainsi définie est commutative, associative et possède un neutre.
- 4. La structure $(\ell^1(\mathbb{Z}), \star)$ est-elle un groupe?

Semaine du 19 Mai - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Montrer que pour x réel, la famille $\left(\frac{(px)^n}{n!p!}\right)$ est sommable.
- 2. Caractérisation de la continuité avec les images réciproques d'ouverts.

Exercice nº 2:

(Familles sommables) : Calculer
$$\sum_{(p,q)\in\mathbb{N}\times\mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)}$$

Exercice no 3:

(Familles sommables) : Calculer
$$\sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}$$

Exercice nº 4:

(Familles sommables) : Soit $x \in]-1,1[$.

- 1. Démontrer que la famille $(x^{kl})_{(k,l)\in(\mathbb{N}^*)^2}$ est sommable.
- 2. En déduire que

$$\sum_{k=1}^{+\infty} \frac{x^k}{1 - x^k} = \sum_{n=1}^{+\infty} d(n)x^n$$

où d(n) est le nombre de diviseurs positifs de n.

Semaine du 19 Mai - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. $\exp: z \in \mathbb{C} \mapsto e^z \in \mathbb{C}^*$ est un morphisme de groupes.
- 2. Si f est de classe C^1 sur U, $a \in U$, v un vecteur non nul de \mathbb{R}^n , alors f admet une dérivée selon v en a et $D_u f(a) = \nabla f(a) \cdot v$

Exercice nº 2:

(Familles sommables) : Calculer
$$\sum_{(p,q)\in\mathbb{N}^{*2}} \frac{1}{pq(p+q-1)}$$
.

Exercice no 3:

(Familles sommables) : Soit (u_n) une suite numérique. Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n 2^k u_k.$$

- 1. On suppose dans cette question la série $\sum u_n$ absolument convergente. Montrer que la série $\sum v_n$ converge et exprimer sa somme en fonction de celle de $\sum u_n$.
- 2. On suppose dans cette question que la suite (u_n) tend vers 0. Déterminer la limite de (v_n) .
- 3. On suppose dans cette dernière question la série $\sum u_n$ convergente. Montrer la convergence de $\sum v_n$ et déterminer sa somme en fonction de celle de $\sum u_n$.