Semaine du 9 Juin - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 29, propriétés 21 et 22 : lemmes de coalition.

Exercice nº 2:

(Déterminant) : Soit f définit par $P \in \mathbb{K}_2[X] \mapsto P + P'$.

- 1. Montrer que f est un endomorphisme.
- 2. Calculer det(f). Que peut-on en déduire?

Exercice no 3:

(Groupe symétrique) : Soient $n \geq 2$ et $(i,j) \in [1,n]^2$ tel que $i \neq j$ et $\sigma \in S_n$. Montrer que σ et $\tau = (i \ j)$ commutent si, et seulement si, $\{i,j\}$ est stable par σ .

Exercice no 4:

(Probabilités) : Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant la même loi de Bernoulli de paramètre p. On note M la matrice aléatoire $(X_iX_j)_{1 \leq i,j \leq n}$.

- 1. Déterminer la loi de rg(M).
- 2. Déterminer la loi de tr(M).

Semaine du 9 Juin - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 30b, propriétés 9 et 10 : Formules de changement de bases et caractérisation d'une base.

Exercice nº 2:

(Déterminant): Soient E un espace vectoriel de dimension n et F et G deux sous-espaces vectoriels supplémentaires de F et G. Calculer le déterminant de la projection sur F parallèlement à G et de la symétrie par rapport à F parallèlement à G en fonction des dimensions de F et G.

Exercice no 3:

(Groupe symétrique) : Montrer que tout élément de A_n se décompose en produit de 3-cycles. (Autrement dit que les 3-cycles engendrent A_n).

Exercice nº 4:

(Probabilités) : Une entreprise recrute un cadre. n candidats se présentent pour le poste (n étant un entier naturel non nul fixé). Chacun d'eux passe un test et le premier qui y satisfait est engagé. La probabilité qu'un candidat de réussir le test est $p \in]0,1[$. On notera q=1-p pour alléger les calculs.

On définit la variable aléatoire X par X=k si le k-ième candidat qui se présente est engagé, et X=n+1 si aucun des n candidats n'est engagé.

- 1. (a) Déterminez la loi de X.
 - (b) Vérifiez que $\sum_{k=1}^{n+1} P(X=k) = 1$.
- 2. (a) En dérivant par rapport à x la formule donnant $\sum_{k=0}^{n} x^k$, calculer $\sum_{k=1}^{n} kx^{k-1}$.
 - (b) En déduire que $\mathbb{E}(X) = \frac{1-q^{n+1}}{1-q}$.
- 3. Comment doit-on choisir p pour avoir plus d'une chance sur deux de recruter l'un des n candidats? Calculer la valeur minimum de p obtenue pour n=4 puis pour n=10.

Semaine du 9 Juin - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 30b, propriété 26 : développement suivant une ligne ou une colonne.

Exercice no 2:

(Déterminant) : Soit $V = \{x \mapsto e^x P(x) \mid P \in \mathbb{R}_n[X]\}.$

- 1. Montrer que V est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$ dont on déterminera la dimension.
- 2. Montrer que l'application $D: f \mapsto f'$ est un endomorphisme de V dont on calculera le déterminant.

Exercice no 3:

(Groupe symétrique) : Soit $n \ge 3$

- 1. Soient $a \neq b \in [1, n]$ et $\sigma \in S_n$. Montrer que $\sigma \circ (a \ b) \circ \sigma^{-1} = (\sigma(a) \ \sigma(b))$.
- 2. On (r)appelle que le centre du groupe symétrique est l'ensemble des permutations $\sigma \in S_n$ qui commutent avec toutes les autres : $\forall s \in S_n, s \circ \sigma = \sigma \circ s$. Déterminer le centre de S_n .

Exercice no 4:

Soit $n \in \mathbb{N}^*$. On considère deux variables aléatoires indépendantes X_1 et X_2 suivant la loi uniforme sur [1, n]. On pose $Y = \max(X_1, X_2)$ et $Z = \min(X_1, X_2)$.

- 1. Déterminer les lois de Y et Z.
- 2. Calculer leurs espérances et leurs variances.
- 3. Déterminer des équivalents des espérances et des variances de Y et Z lorsque n tend vers $+\infty$.
- 4. Les variables aléatoires Y et Z sont-elles indépendantes?