Semaine du 30 septembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Soit $\varphi: I \to \mathbb{C}$ dérivable, Compléter et démontrer : $(\exp \circ \varphi)'(t) = ?$
- 2. Donner et démontrer les limites de ln en $+\infty$ et 0^+ .
- 3. Compléter et démontrer : |th| <?

Exercice nº 2:

(Applications) : Soit $f: E \to F$ où E, F sont deux ensembles. On considère $\varphi: A \in \mathcal{P}(E) \mapsto f(A)$. Montrer que f est injective si et seulement si φ l'est.

Exercice no 3:

(Dérivation et fonctions usuelles) : On considère la fonction numérique f définie par

$$f(x) = (x^2 - 1) \arctan \frac{1}{2x - 1}$$

- 1. Quel est l'ensemble de définition \mathcal{D}_f de f?
- 2. Montrer que f est dérivable sur D et mettre f' sous la forme suivante :

$$\forall x \in \mathcal{D}_f \setminus \{0\}, f'(x) = 2xg(x)$$

avec g à déterminer.

- 3. Montrer que pour tout $x \in \mathbb{R}, 2x^4 4x^3 + 9x^2 4x + 1 > 0$.
- 4. Étudier q et en déduire les variations de f.

Semaine du 30 septembre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Que dire de la composée et de la restriction de fonctions surjectives? Le démontrer.
- 2. Énoncer et démontrer la propriété de morphisme de ln.
- 3. Montrer que \ln_a et \exp_a sont bijectives et réciproques.

Exercice nº 2:

(Dérivation) : Étudier si les fonctions ci-dessous sont dérivables et de classe C^1 sur $\mathbb R$:

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{array} \right. & \text{et} \quad g: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{ccc} x^3 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{array} \right. \end{array} \right.$$

Exercice nº 3:

(Fonctions usuelles) : On note $f: x \mapsto \arcsin(x) + \arcsin(2x)$

- 1. Déterminer l'ensemble de définition I de f.
- 2. Calculer $f\left(\frac{1}{2}\right)$.
- 3. Justifier que f induit une bijection de I sur un intervalle J à déterminer.
- 4. Justifier sans résoudre l'équation, que l'équation $f(x) = \frac{\pi}{2}$ admet une unique solution dans I.
- 5. Résoudre l'équation de la question précédente.

Semaine du 30 septembre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Soit $f: E \to F$ et $g: F \to E$. Compléter et démontrer, si $f \circ g = Id_F$ et $g \circ f = Id_E$ alors?
- 2. Compléter et démontrer : $|ch| \ge ?$
- 3. Pour a > b > 0, $\lim_{x \to +\infty} \frac{\ln^b x}{x^a} = ?$

Exercice nº 2:

(Applications) : La fonction suivante $f:t\in\mathbb{R}\mapsto e^{it}\in\mathbb{C}$ est-elle bijective? Si non, comment modifier les ensembles de départ et d'arrivée afin de la rendre bijective?

Exercice nº 3:

(Dérivation et fonctions usuelles) : On pose $f: x \mapsto \arctan(\operatorname{sh} x) + \arccos(\operatorname{th} x)$

- 1. Donner le domaine de définition et de dérivabilité de f
- 2. Montrer que f' est nulle sur son domaine de dérivabilité.
- 3. Montrer que $\arctan(\frac{5}{12}) + \arccos(\frac{5}{13}) = \frac{\pi}{2}$.

Semaine du 30 septembre - Exercices supplémentaires

Exercice no 1:

(Applications) : Soit f une injection de $\mathbb N$ dans $\mathbb N$ telle que pour tout $n\geq 0, f(n)\leq n$. Montrer que $f=Id_{\mathbb N}$

Exercice nº 2:

(Applications) : Soit f une surjection de $\mathbb N$ dans $\mathbb N$ telle que pour tout $n\geq 0, f(n)\leq n$. Montrer que $f=Id_{\mathbb N}$

Exercice no 3:

(Applications) : Soit A,B,C,D des ensembles. Construire une bijection entre $C^{A\times B}$ et $(C^A)^B$ et une injection de $C^A\times D^B$ dans $(C\times D)^{A\times B}$

Exercice nº 4:

(Applications) : Soit E un ensemble, et $p: E \to E$ telle que $p \circ p = p$. Montrer si p est surjective ou injective, alors $p = Id_E$.