Semaine du 07 Octobre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Primitives de $x \mapsto e^{ax} \cos(bx)$ et $x \mapsto e^{ax} \sin(bx)$
- 2. Exprimer $J_{n+1}(x)$ en fonction de $J_n(x)$ où $J_n(x) = \int_0^x \frac{dt}{(1+t^2)^n}$

Exercice nº 2:

(Primitives): Déterminer une primitive de la fonction $x \mapsto \frac{1}{x^2+2x+2}$

Exercice no 3:

(Intégrale et primitive) : Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \sqrt{1-t} dt$

- 1. Trouver une relation de récurrence entre I_{n-1} et I_n .
- 2. Calculer I_0 puis I_n pour tout $n \ge 0$.
- 3. Calculer I_n d'une autre manière et montrer que

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+3} \binom{n}{k} = 2^{2n+2} \frac{n!(n+2)!}{(2n+4)!}$$

Semaine du 07 Octobre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Pour $X \in]0, \pi[, \int_0^X \frac{dt}{2 + \cos(t)} = ?$
- 2. Croissance de l'image directe.
- 3. Primitive de tan.

Exercice nº 2:

(Primitives) : Déterminer une primitive de la fonction $x \mapsto (\sin(2x))^3 \cos(3x)$

Exercice no 3:

(Intégrale et primitive) : On pose pour $n \in \mathbb{N}, I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 0
- 2. Déterminer une relation de récurrence entre I_{n+1} et I_n .
- 3. Calculer I_0 .
- 4. On pose $S_n = \sum_{k=0}^n \frac{1}{k!}$. Exprimer S_n en fonction de I_n
- 5. En déduire la convergence de $(S_n)_{n\in\mathbb{N}}$ et que $e=\lim_{n\to+\infty}\sum_{k=0}^n\frac{1}{k!}$

Semaine du 07 Octobre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Formule de changement de variables.
- 2. Primitive de arctan.
- 3. Dérivation de $x \mapsto \int_{\frac{1}{x}}^{x^2} \cos(e^t) dt$

Exercice nº 2:

(Primitives) : Déterminer une primitive de la fonction $x \mapsto \frac{1}{x^2 - 2x\cos(\theta) + 1}$ pour $\theta \notin \pi \mathbb{Z}$

Exercice no 3:

(Intégrale et primitive) : On pose pour $n \in \mathbb{N}, I_n = \int_0^1 \frac{t^n}{1+t} dt$

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 0
- 2. Déterminer une relation de récurrence entre I_{n+1} et I_n .
- 3. Calculer I_0 .
- 4. On pose $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer S_n en fonction de I_n .
- 5. En déduire la convergence de $(S_n)_{n\in\mathbb{N}}$ et que $\ln(2) = \lim_{n\to+\infty} \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$

Semaine du 07 Octobre - Exercices supplémentaires

Exercice nº 1:

Wallis \rightarrow Exercice 5

Exercice nº 2:

Différentes primitives -> Exo et Solutions