Semaine du 4 Novembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Que dire de l'image directe d'un sous-groupe par un morphisme de groupes? Le montrer.
- 2. Si A est une partie non vide, majorée de \mathbb{R} alors inf (-A) = ?
- 3. Si A est une partie non vide, minorée de \mathbb{R} alors sup (-A) = ?

Exercice nº 2:

(Groupes): Soit G un groupe. On définit le centre de G comme étant :

$$Z(G) = \{ a \in G, \forall x \in G, ax = xa \}$$

Montrer que Z(G) est un sous-groupe de G.

Exercice no 3:

(Anneaux) : Soit $(A,+,\times)$ un anneau. Un élément a de A est dit nilpotent s'il existe $n\in\mathbb{N}$ tel que $a^n=0_A$

- 1. Soit $(x,y) \in A^2$. Montrer que si $x \times y$ est nilpotent, alors $y \times x$ est nilpotent.
- 2. Soit $(x, y) \in A^2$. Montrer que si x et y commute, et que l'un des deux est nilpotent, alors $x \times y$ est nilpotent.
- 3. Soit $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- 4. Soit $x \in A$. Montrer que si x est nilpotent, alors $1_A x$ est inversible et calculer son inverse.

Semaine du 4 Novembre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Donner une caractérisation de l'injectivité d'un morphisme de groupes et le démontrer.
- 2. Démontrer l'existence et l'unicité de la partie entière.

Exercice nº 2:

(Anneaux et corps):

- 1. On note $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}$. Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.
- 2. Soit F un sous-corps de $(\mathbb{Q}, +, \times)$. Montrer que $F = \mathbb{Q}$.

Exercice no 3:

(Sous-groupe de \mathbb{Z}): Pour $a \in \mathbb{N}$, on note $a\mathbb{Z} = \{ak | k \in \mathbb{Z}\}.$

- 1. Montrer que $a\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 2. On se propose de montrer que, réciproquement, tout sous-groupe de \mathbb{Z} est de cette forme.
 - a) Vérifier que le groupe {0} est de la forme voulue.
 - b) Soit H un sous-groupe de $(\mathbb{Z}, +)$ non réduit à $\{0\}$. Montrer que $H_+ = \{h \in H | h > 0\}$ possède un plus petit élément. On note $a = \min(H_+)$.
 - c) Établir que $a\mathbb{Z} \subseteq H$.
 - d) En étudiant le reste de la division euclidienne d'un élément de H par a montrer que $H\subseteq a\mathbb{Z}$.
 - e) Conclure que pour tout sous-groupe H de \mathbb{Z} , il existe un unique $a \in \mathbb{N}$ tel que $H = a\mathbb{Z}$.

Semaine du 4 Novembre - Planche nº 3

Exercice no 1:

(Questions de cours):

- 1. Donner et démontrer le théorème de caractérisation des sous-groupes.
- 2. Si $M = \sup(A)$, alors il existe un suite de points de A convergeant vers M.

Exercice nº 2:

(Corps): On note $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3}, (a, b) \in \mathbb{Q}^2\}$. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un corps.

Exercice no 3:

(Morphisme et applications) : Les deux questions suivantes sont indépendantes mais la philosophie de résolutions sont proches.

- 1. Soit A un anneau intègre commutatif fini. Montrer que A est un corps.
- 2. Soit f un morphisme non constant d'un groupe fini (G,\cdot) dans (\mathbb{C}^*,\times) . Calculer $\sum_{x\in G} f(x)$.