Semaine du 18 Novembre - Planche nº 1

Exercice no 1:

(Question de cours) : Résolution d'une équation du second degré à coefficients complexes (Propriété 20 du Chapitre 8).

Exercice nº 2:

(Nombres complexes) : Soient $n \ge 1$ et $\omega = e^{2i\pi/n}$

- 1. Soit $m \in \mathbb{N}$. Calculer $\sum_{k=0}^{n-1} \omega^{km}$. On pourra distinguer suivant m multiple ou non de n.
- 2. Pour $z \in \mathbb{C}$, on pose

$$S(z) = \sum_{k=0}^{n-1} (z + \omega^k)^n$$

Montrer que pour tout $z \in \mathbb{C}, S(z) = n(z^n + 1)$

3. Calculer $S(e^{i\pi/n})$ et en déduire que $\sum_{k=0}^{n-1} (-1)^k \cos^n\left(\frac{(2k-1)\pi}{2n}\right) = 0$.

Exercice no 3:

(Intégrale et primitive) : Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 t^n \sqrt{1-t} dt$

- 1. Trouver une relation de récurrence entre I_{n-1} et I_n .
- 2. Calculer I_0 puis I_n pour tout $n \geq 0$.
- 3. Calculer I_n d'une autre manière et montrer que

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+3} \binom{n}{k} = 2^{2n+2} \frac{n!(n+2)!}{(2n+4)!}$$

Semaine du 18 Novembre - Planche nº 2

Exercice no 1:

(Question de cours) : Description des racines n-èmes de l'unité, somme (Théorème 22 et Propriété 23 du Chapitre 8).

Exercice nº 2:

(Nombres complexes) : On pose $\omega = e^{2i\pi/5}$ et $\alpha = \omega + \frac{1}{\omega}$.

- 1. Montrer que $\frac{1}{\omega^2} + \frac{1}{\omega} + 1 + \omega + \omega^2 = 0$.
- 2. En déduire que α est solution d'une équation du second degré que l'on précisera.
- 3. En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$ puis de $\sin\left(\frac{2\pi}{5}\right)$.

Exercice nº 3:

(Intégrale et primitive) : On pose pour $n \in \mathbb{N}, I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 0
- 2. Déterminer une relation de récurrence entre I_{n+1} et I_n .
- 3. Calculer I_0 .
- 4. On pose $S_n = \sum_{k=0}^n \frac{1}{k!}$. Exprimer S_n en fonction de I_n
- 5. En déduire la convergence de $(S_n)_{n\in\mathbb{N}}$ et que $e=\lim_{n\to+\infty}\sum_{k=0}^n\frac{1}{k!}$

Semaine du 18 Novembre - Planche nº 3

Exercice no 1:

(Question de cours) : Dérivabilité et dérivée de $t\mapsto e^{\varphi(t)}$ lorsque $\varphi:I\to\mathbb{C}$ est dérivable sur I (Propriété 33 du Chapitre 8).

Exercice nº 2:

(Intégrale et primitive) : On pose pour $n \in \mathbb{N}, I_n = \int_0^1 \frac{t^n}{1+t} dt$

- 1. Montrer que $(I_n)_{n\in\mathbb{N}}$ converge vers 0
- 2. Déterminer une relation de récurrence entre I_{n+1} et I_n .
- 3. Calculer I_0 .
- 4. On pose $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer S_n en fonction de I_n .
- 5. En déduire la convergence de $(S_n)_{n\in\mathbb{N}}$ et que $\ln(2) = \lim_{n\to+\infty} \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$

Exercice no 3:

(Nombres complexes - géométrie) : Dans tout l'exercice, le plan affine euclidien est rapporté à un repère orthonormé direct R.

- 1. Déterminer les nombres complexes z non nuls tels que les nombres complexes $z, \frac{1}{z}$ et 1+z aient même module.
- 2. Déterminer les nombres complexes z tels que $|z-1|=|\bar{z}+1|$. Donner une interprétation géométrique.