Semaine du 18 Novembre - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Que dire d'une suite croissante et majorée? Le montrer.
- 2. Que dire de la composée de limites de deux fonctions? Le montrer (seulement cas de a, b réels et c complexes)

Exercice nº 2:

(Suites): Soient a > 0 et on définit le suite $(u_n)_{n \in \mathbb{N}}$ par $u_n = (1+a)(1+a^2)\cdots(1+a^n)$

- 1. Montrer que si $a \ge 1, u_n \to +\infty$
- 2. Montrer que si 0 < a < 1, La suite $(u_n)_{n \in \mathbb{N}}$ est convergente. (Indication: on pourra utiliser l'inégalité $1 + x \leq e^x$ valable pour tout $x \in \mathbb{R}$)

Exercice no 3:

(Suites): Une suite de nombres complexes $(u_n)_{n\in\mathbb{N}}$ est dite de Cauchy si:

$$\forall \varepsilon > 0, \exists N > 0, \forall n, m \ge N, |u_n - u_m| \le \varepsilon$$

- 1. Montrer qu'une suite convergente est une suite de Cauchy.
- 2. Montrer qu'une suite de Cauchy qui admet une sous-suite convergente est convergente
- 3. Montrer qu'une suite de Cauchy est bornée.
- 4. En déduire que la réciproque à la question 1 est vraie.

Semaine du 18 Novembre - Planche nº 2

Exercice no 1:

(Questions de cours):

- 1. Énoncer et démontrer le théorème de recollement avec les suites extraites de rangs pairs et impairs.
- 2. Comparaison asymptotique de a^n et n!.
- 3. Montrer que cos n'a pas de limite en $+\infty$.

Exercice nº 2:

(Suites) : On définit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par :

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$$
 et $v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$

- 1. Montrer que les suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.
- 2. En déduire un équivalent de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$.

Exercice no 3:

(Suites) : (Théorème de Césaro) Si $(u_n)_{n\in\mathbb{N}}$ est une suite de nombres complexes. Pour tout $n\geq 1$, on pose $S_n=\sum_{k=1}^n u_k$.

- 1. On suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Montrer que $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} 0$.
- 2. En déduire que si $u_n \xrightarrow[n \to +\infty]{} a \in \mathbb{C}$, alors $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} a$.
- 3. La réciproque à la question 2 est elle vraie?

Semaine du 18 Novembre - Planche nº 3

Exercice no 1:

(Questions de cours):

1. Énoncer et démontrer la caractérisation séquentielle de l'existence de limite.

Exercice nº 2:

(Suites): On définit deux suites $(S_n)_{n\in\mathbb{N}}$ et $(S'_n)_{n\in\mathbb{N}}$ par :

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $S'_n = S_n + \frac{1}{n}$

1. Montrer que les suites $(S_n)_n$ et $(S'_n)_n$ sont adjacentes.

On peut montrer que leur limite commune est $\frac{\pi^2}{6}$, mais ce sera pour une autre colle...

Exercice no 3:

(Suites) : Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite dont les sous-suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent dans \mathbb{R} . Montrer que $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.

Question bonus : ce résultat persiste-il si on ne suppose la convergence que des suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{6n})_{n\in\mathbb{N}}$?

Exercice no 4:

(Suites) : Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite réelle non majorée.

1. Montrer que

$$\forall (M,N) \in \mathbb{R} \times \mathbb{N}, \exists n \in \mathbb{N} : n \geq N+1 \text{ et } u_n \geq M$$

- 2. En déduire que $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite qui diverge vers $+\infty$.
- 3. Montrer que la construction de la question précédente peut être affinée pour prouver que $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite strictement croissante qui diverge vers $+\infty$.