L1 (BST) - Outils mathématiques : Fiche Méthode n°2

Alix MATHIEU - https://alixm1.github.io

Table des matières

1	Ens	emble de définition d'une fonction	1	
	1.1	Rappels et définition	1	
	1.2	Méthode pour déterminer l'ensemble de définition d'une fonction	2	
2	Limites d'une fonction			
	2.1	Définition et opérations sur les limites	2	
	2.2	Théorèmes de comparaisons	3	
	2.3	Formes indéterminées : Fonctions rationnelles, croissances comparées et levée d'in-		
		détermination	4	
	2.4	Exemples et méthodes pratiques	4	

1 Ensemble de définition d'une fonction

1.1 Rappels et définition

Défintion : Une **fonction réelle d'une variable réelle** est une application qui à $x \in D_f$, avec D_f une partie de \mathbb{R} , associe un unique nombre réel y. On note de la façon suivante :

$$f: D_f \to \mathbb{R}$$
$$x \mapsto y = f(x).$$

où D_f est appelé **le domaine de définition** de la fonction f .

Remarque importante : Le domaine de définition de la fonction f est le plus grand ensemble de nombre tel que l'expression définissant la fonction f est un sens.

Exemple: Le domaine de définition de la fonction $x \mapsto \ln(x)$ où ln désigne le logarithme népérien, est $\mathbb{R}_+^* = \{x \in \mathbb{R}, x > 0\}$, car le logarithme népérien n'a un sens que pour des nombres réels strictement positifs par définition.

1.2 Méthode pour déterminer l'ensemble de définition d'une fonction

Méthode : Comment déterminer l'ensemble de définition d'une fonction ?

- 1. Regarder chaque terme de l'expression qui définie la fonction, et regarder en fonction de *x* quand chaque terme a un sens.
- 2. Prendre l'ensemble le plus grand qui vérifie toutes les conditions afin que chaque terme ait un sens.

Nous allons traiter plusieurs **exemples importants** classiques qui méritent l'attention du lecteur, il faut savoir adapter ceux-ci à d'autres cas similaires.

* Cas 1 : Fonction définie par un quotient.

Considérons la fonction $f: x \mapsto \frac{2x+7}{3x-4}$. Pour que l'expression définissant f ait un sens, il faut avoir le droit de diviser par 3x-4. On peut diviser par n'importe quel terme qui n'est pas égal à 0, ainsi on doit avoir $3x-4\neq 0 \Leftrightarrow x\neq \frac{4}{3}$. Ainsi l'expression a un sens pour $x\in \mathbb{R}\setminus \{\frac{4}{3}\}$ et donc $D_f=\mathbb{R}\setminus \{\frac{4}{3}\}=]-\infty, \frac{4}{3}[\cup].\frac{4}{3},+\infty[$

* Cas 2 : Fonction définie par un \ln ou une $\sqrt{\cdot}$.

Considérons la fonction $f: x \mapsto \ln(x^2 + 5x - 4)$. Pour que que l'expression définissant f ait un sens, il faut que l'expression à l'intérieur du ln soit strictement positive (pour pouvoir prendre le ln). Ainsi déterminons le signe du polynôme du second degré $T(x) = x^2 + 5x - 4$. On calcule le discriminant et les racines :

 $\Delta = 5^2 - 4 \times 1 \times (-4) = 41 > 0$, T(x) admet donc 2 racines réelles distinctes $r_1 = \frac{-5 - \sqrt{41}}{2} < 0$ et $r_2 = \frac{-5 + \sqrt{41}}{2} > 0$. Comme le coefficient dominant a = 1, on sait que T est positif à l'extérieur de ses deux racines. Ainsi T(x) > 0 si et seulement si $x \in]-\infty$, $r_1[\cup]r_2$, $+\infty[$.

En récapitulant ce qu'on a dit depuis le début, on obtient que $D_f =]-\infty, r_1[\cup]r_2, +\infty[$.

Remarque : On aurait presque la même chose si on avait remplacé \ln par $\sqrt{\cdot}$ car la racine d'un nombre est définie pour des nombres positifs ou nuls (il aurait juste fallu rajouter r_1 et r_2 en plus).

* Cas 3 : Fonction quelconque définie par un certain nombre de fonctions/opérations.

Considérons la fonction $f: x \mapsto 3x + \frac{1}{\cos(x)} + \sqrt{x-3}$. Pour que l'expression définissant f ait un sens, il faut que chaque terme soit bien défini (ait un sens), on va donc les traiter un à un, puis comme dans la méthode trouver le plus grand ensemble vérifiant toute les conditions souhaitées.

- Le terme 3x a toujours un sens, et donc est définie pour tout $x \in \mathbb{R}$.
- Le terme $\frac{1}{\cos(x)}$ a un sens pour x tel que $\cos(x) \neq 0$. Hors $\cos(x) = 0$ pour x qui est un multiple de $\frac{\pi}{2}$. Ainsi $\frac{1}{\cos(x)}$ ait bien définie dès que x n'est pas un multiple de $\frac{\pi}{2}$.
- $\sqrt{x-3}$ est définie dès que $x-3 \ge 0$, c'est-à-dire $x \ge 3$.

En conclusion, pour que toutes les conditions de chaque terme soient vérifiées, on doit avoir x > 3 et x qui n'est pas un multiple de $\frac{\pi}{2}$. Ainsi $D_f = \{x \in \mathbb{R}, x > 3 \text{ et } x \text{ pas un multiple de } \frac{\pi}{2}\}$

2 Limites d'une fonction

2.1 Définition et opérations sur les limites

Définition : Cf. votre cours/TD.

Opérations sur les limites : On considère deux fonctions f et g dont on considère la limite en un point ou en $\pm \infty$, on a donc les opérations suivantes sur les limites : (On note **FI** pour **forme indéterminée** : c'est un cas où on ne peut pas d'emblée donnée de résultat, il faut lever l'indétermination (voir plus bas))

* Sommes de limites:

Si $\lim f(x) =$	ℓ	ℓ	ℓ	+∞	$-\infty$	+∞
Si $\lim g(x) =$	ℓ'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
Alors $\lim f(x) + g(x) =$	$\ell + \ell'$	+∞	$-\infty$	+∞	$-\infty$	FI

* Produit de limites:

Si $\lim f(x) =$	ℓ	$\ell \neq 0$	0	∞
Si $\lim g(x) =$	ℓ'	∞	∞	∞
Alors $\lim f(x) \times g(x) = \int_{-\infty}^{\infty} f(x) dx$	$\ell \times \ell'$	(∗)∞	FI	(∗)∞

(*) appliquer la règle des signes.

* Quotient de limites :

Si $\lim f(x) =$	ℓ	$\ell \neq 0$	0	ℓ	∞	∞
Si $\lim g(x) =$	$\ell' \neq 0$	0	0	∞	ℓ'	∞
Alors $\lim \frac{f(x)}{g(x)} =$	$\frac{\ell}{\ell'}$	(∗)∞	FI	0	(∗)∞	FI

(*) appliquer la règle des signes.

* Composition de limites :

Soient f, g et h trois fonctions telles que $h = g \circ f$. Chacunes des lettres a, b et c désigne soit un réel, soit $\pm \infty$.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{x \to b} g(x) = c$ alors $\lim_{x \to a} h(x) = c$

Exemple: Déterminer
$$\lim_{x \to 2} \sqrt{x^2 + 3x - 2}$$
. On a $\lim_{x \to 2} x^2 + 3x - 2 = 2^2 + 3 \times 2 - 2 = 8$ et $\lim_{x \to 8} \sqrt{x} = \sqrt{8}$ donc $\lim_{x \to 2} \sqrt{x^2 + 3x - 2} = \sqrt{8}$.

2.2 Théorèmes de comparaisons

Théorème 1 : (dit de comparaison) Soit f, g deux fonctions définies sur un intervalle I, et $a \in I$ qui est un réel ou $\pm \infty$. :

- Si pour tout $x \in I$, $f(x) \ge g(x)$ et $\lim_{x \to a} g(x) = +\infty$, alors $\lim_{x \to a} f(x) = +\infty$.
- Si pour tout $x \in I$, $f(x) \le g(x)$ et $\lim_{x \to a} g(x) = + -infty$, alors $\lim_{x \to a} f(x) = -\infty$.

Théorème 2 : (dit des gendarmes ou d'encadrement) Soit f, g et h trois fonctions définies sur un intervalle I, et $a \in I$ qui est un réel ou $\pm \infty$:

• Si pour tout
$$x \in I$$
, $h(x) \le f(x) \le g(x)$ et $\lim_{x \to a} h(x) = \lim_{x \to a} g(x) = \ell$, alors $\lim_{x \to a} f(x) = \ell$

2.3 Formes indéterminées : Fonctions rationnelles, croissances comparées et levée d'indétermination

Dans certains cas, les formes indéterminées n'en sont pas, et on peut déterminer la valeur de la limite :

* Cas 1 : Fonction rationnelle (quotient de deux polynômes)

Une fonction rationelle a même limite en $\pm \infty$ que son monôme ddu plus haut degré de son numérateur sur celui de son numérateur :

Si
$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$
, alors $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$.

Exemple:
$$\lim_{x \to +\infty} \frac{3x^3 + 4x^2 + 2}{-5x^6 + 8x^4 + 3x + 2} = \lim_{x \to +\infty} \frac{3x^3}{-5x^6} = \lim_{x \to +\infty} \frac{-3}{5x^3} = 0$$

Remarque : Si on considère le polynôme constant égal à 1 au dénominateur, on retrouve que la limite en $\pm \infty$ d'un polynôme est donné par le coefficient de son terme de plus haut degré.

* Cas 2 : Croissances comparées

On a dans le cadre de multiplication/quotient de puissances et de logarithme/exponentielle le plus souvent des F.I., mais celles-ci sont résolues par les propriétés suivantes dont on retiendra les slogans suivants :

• Les puissances l'emportent sur le logarithme : Soit $a \in \mathbb{R}_+^*$,

$$\lim_{x \to 0} x^a \ln(x) = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x^a} = 0$$

• L'exponentielle l'emporte sur les puissances : Soit $a \in \mathbb{R}_+^*$,

$$\lim_{x \to -\infty} x^a e^x = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} \frac{e^x}{x^a} = +\infty$$

* Cas 3 : Méthode pour lever une indétermination : Pour cela, il faut la plupart du temps factoriser l'expression de la fonction par un des termes et se ramener à des limites connues usuelles, ou au cas 1 et 2 précédent! (Voir ci-dessous les exemples)

2.4 Exemples et méthodes pratiques

Exemple 1: Déterminer la limite en 1 de $f(x) = \frac{1}{1-x} - \frac{2}{1-x^2}$. On commence par observer qu'on se trouve dans le cas d'une F.I. $+\infty - \infty$, il faut donc lever l'indétermination. Pour cela on factorise :

$$\frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1}{1-x} \left(1 - \frac{2}{1+x} \right) = \frac{x-1}{(1-x)(1+x)} = \frac{-1}{1+x}$$

On a ainsi levé l'indétermination et on a donc :

$$\lim_{x \to 1} \frac{1}{1 - x} - \frac{2}{1 - x^2} = \lim_{x \to 1} \frac{-1}{1 + x} = \frac{-1}{2}.$$

Exemple 2: Déterminer $\lim_{x \to +\infty} \frac{x^3 + x + 5}{5x^3 + 7x^2 + 8}$. On se trouve dans le cas d'une F.I. $\frac{\infty}{\infty}$ qui est une fonction rationnelle, donc par le Cas 1, on a vu :

$$\lim_{x \to +\infty} \frac{x^3 + x + 5}{5x^3 + 7x^2 + 8} = \lim_{x \to +\infty} \frac{x^3}{5x^3} = \lim_{x \to +\infty} \frac{1}{5} = \frac{1}{5}.$$

Exemple 3 : Déterminer $\lim_{x \to +\infty} x^5 e^{-x^2}$. Écrivons $u(x) = -x^2$, alors $\lim_{x \to +\infty} u(x) = -\infty$, alors par composition on obtient $\lim_{x \to +\infty} e^{-x^2} = 0$. On se trouve ici dans le cadre d'une F.I. $0 \times \infty$, mais par croissances comparées, comme l'exponentielle l'emporte, alors $\lim_{x \to +\infty} x^5 e^{-x^2} = 0$.

Exemple 4 : (Utilisation théorèmes de comparaison) Déterminer $\lim_{x \to +\infty} x + \sin(x)$. Comme pour tout $x \in \mathbb{R}$, $\sin(x) \ge -1$, alors $x + \sin(x) \ge x - 1$. Mais $\lim_{x \to +\infty} x - 1 = +\infty$, alors $\lim_{x \to +\infty} x + \sin(x) = +\infty$