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1 General statements on Banach algebras

1.1 Some reminders on Banach spaces
For this section, (F, ||.||) is a normed vector space.

DEFINITION 1.1.1 : (CONVERGENT SEQUENCE)

Let (e,)nen be asequencein Fandein E.

We say that (e, ),cn converges toward e in E when: |le,, — e¢|]| — 0.
n—oo

DEFINITION 1.1.2 : (CAUCHY SEQUENCE AND BANACH SPACE)
Let (e,)nen be a sequencein E.

» We say that (e,,),en is a Cauchy sequence when :
Ve > 0,3dn € N,Vp,q > n,lle, — ¢y <e.

» Wesaythat (£, ||.||) is a Banach space when any Cauchy sequence of E is convergentin
E.

DEFINITION 1.1.3 : (CONVERGENT SERIES AND NORMALLY CONVERGENT SERIES)
Let (e,)nen be a sequencein E.

N
» We say that Z e, is convergentin £ when (Z en> converges in F.
NeN

neN n=0

> We saythat ) ¢, is normally convergent when > _[|e, | converges (in R).
neN neN

THEOREM 1.1.4 : CHARACTERISATION OF BANACH SPACES
Normed vector space (E, ||.||) is a Banach space if and only if any normally convergent series is
convergent.

PROOF:

— Letus assume that (E, ||.||) is a Banach space.

Let (e,)nen be a sequencein E such that ° e, is normally convergent.
neN
Letk > [. Then:

k

> e

n=Il+1

k
> lleall

n=I[+1

—+00
<> el

n=I[l+1

k !
D en =) enl =

n=0 n=0

IN

+o00
But, > e, isnormally convergentso > ||e,|| converges.Hence, > |le,| isaremainder
neN neN n=I[+1

+o00
of a convergent series. So, > |le,|| — 0.

So, <Z en> is a Cauchy sequence is Banach space E.
neN

neN



Hence, (Z en) converges in E which means _ e, converges.
neN neN neN
— Let us assume that any normally convergent series is convergent.
Let (e,,)nen be a Cauchy sequence in E. Then,

Ve >0,In € N,Vp,qg>n, lle, —eql| < e

Fore = (1)" = 1> 0,3n0 € N.¥p, g > no. ey — egf| < (4)".
So, in particular, ||eny 1 — €n, || < (%)0

1)1 1)!
Fore = (5) ,Elnl > nO,VPaq > ny, ”ep - el]” < (5) :
So, in particular, ||e,, 11 — e, || < (%)1
Hence, by induction, we built an increasing sequence (ny,)xen such that :

K
b € N, e — 1 < ()
But, (%)]‘C is the term of a convergent series. So, Y. |len, 11 — en, || is convergent i.e.
keN
> (en,+1—e€n, ) isnormally convergent. Hence, by hypothesis, > (e, +1 —en, ) converges
keN kEN
in B.

K
But,forall K € N, Y (€n, 11 — €n,) = €npet1 — Eng-
k=0

~—~

K
SO, €npi1 = €ny + E (€n,+1 — €n,,). Hence, (e, +1)Kken is convergentin E.
constant k=0 _

~
term of a convergent sequence

So, (én)nen is @ Cauchy sequence which admits a convergent subsequence. So, (e,,)nen
converges in E.

Hence, we showed that any Cauchy sequence of E convergesin E. So,(E, ||.||) is a Banach
space.

1.2 First definitions and properties

DEFINITION 1.2.1 : (ALGEBRA)

Let K be afield.

An algebra B is a K-vectorial space (B, +, .) endow with an internal associative bilinear mul-
tiplication law x, i.e.,foralle, f,g € B:

i)ex feB

) (ex flxg=ex(fxg)=ex[fxg

i) ex(f+g) ) =exf4+exgand(e+ f)xg=exg+[fxe
iv) VA, e K, (Ae) x (u.f) = (Aw)-(n % f)

DEFINITION 1.2.2 : (NORMED ALGEBRA)
We say that an algebra B is normed if we can endow 5 with a norm ||.|| such that :

Ve, [ €B, [lefll < [lefHI /]



REMARK In such an algebra, we can prove by induction that: Vo € B,Vn € N, |le"]| < |[e||".

DEFINITION 1.2.3 : (BANACH ALGEBRA)
A Banach algebra B is a normed algebra (B, ||.||) over K and a Banach space endowed with
the metric induced by the norm ||.||.

DEFINITION 1.2.4 : (UNIT ELEMENT)
Aunitelement 1 of Bisan elementsuchthatforalle € B, el = le = eand verifying ||1|| = 1.

REMARK An algebra doesn’t necessary have a unit but if it exists, then it is unique.
| NoTaTioN We will write in the remainder of the document, forall A € K, A for A1.

DEFINITION 1.2.5 : (INVERTIBLE)
An element e € Bis said invertible if there exists f € Bsuchthatef = fe = 1.
f is unique and will be denoted e~!.

REMARK The set of invertible elements of B endowed with x isa multiplicative group denoted
G(B).

PROPOSITION 1.2.6 :
Lete € B.If |le|| < 1then

1 — eisinvertibleand (1 —e)™' = Zei
=0

PROOF: N
For N € N, let Sy = Y_ e". As Bis a Banach algebra, we have forall nin N, ||e*|| < |le||".But,

n=0
we supposed that ||e|| < 1.So, > |le||" is convergent. Sois >_ |[e"]|. Then, > e is normally
neN neN neN
convergent. Hence, as B is a Banach space, by proposition > e™ convergesin B.

neN
Let S = > e beits limit.
n=0
But, as sums of powers of e, we have: VN € N, Sy(1 —e) = (1 —e)Sy = 1 — eV FL,
So,S(1—e)=(1—¢)S = NlirJrrl (1—eN) =1.
—+00

Hence, 1 — eisinvertibleand (1 —e) ™' =5 = Y ¢" |
n=0
REMARK We also haveif |le]| < 1,that 1 + einvertibleand (1 +¢)~! = > (—1)
=0

DEFINITION 1.2.7 : (RESOLVENT SET)
The resolvent set of ¢ € B denoted p(e) is defined by :

ple) ={¢ € C, e — (isinvertible}
DEFINITION 1.2.8 : (RESOLVENT MAP)
The resolvent of ¢ € B is defined by the following map :

R.:|ple) — G(B)
¢ — (e=Q7




DEFINITION 1.2.9 : (SPECTRUM)
The spectrum of ¢ € B is the complementary set in the complex plane of the resolvent set of
e. It will be denoted :

a(e) = C\p(e)

1.3 Properties of the resolvent

PROPOSITION 1.3.1 @
Let e € B. Then, the set p(e) is open in C.
Moreover, the resolvent R, : z € p(e) — (e — z)~' € G(B) is analytic.

PROOF:
Leta € p(e), we haveforallz € C:

e—z=e—a+a—=z

=(e—a)l—(e—a)'(z—a)

If|z —a|] < m, then by proposition , 1—(e—a)~!(z—a)isinvertibleand soise — 2.
So, #(a, m) C p(e). Then, the resolvent set p(e) is open. Moreover, the proposition also
states that

1
Vz e %’(a,—_l),(e—z)_l =(e—a)! Z((z—a)(e—a)_l)”
lle—a) 7] 2
This shows the resolvent map is analytic. [ |

PROPOSITION 1.3.2 @
Lete € B.
The resolventmap R, : z € p(e) — (e — 2)~ € G(B) is holomorphic on p(e).

PROOF:
Let zo € p(e). We have :

(2 = 20) '[Re(2) = Re(20)] = (2 = 20) '[(e = 2) 7 — (e — 20) ']
=(z—2) e—2)" e—2)"e—2—e+2]
=(z—2) (e —2) (e —20) (2 — 2)
=(e—2)(e—2)""

A, (e — z) 2 by continuity (from analyticity ) of the resolvent of e

Z—20

1.4 Properties of a particular radius

Hereis a little reminder:
PROPOSITION 1.4.1 : ROOT TEST
Let (en)neny C B. Let C := lim {/|en]|
n—-+0o00
i) IfC < 1, the series normally converges (so converges if the space is a Banach).

i) If C' > 1, the series diverges.



PROOF :

i) Let usassumethat C' < 1.Lletq € RsuchthatC < ¢ < 1. AsC' < g, there exists
N € NsuchthatVn > N, HenHl/" < g.Then (|le,||)n>n is upper bounded by a geome-
tric sequence (¢"),>n. But,as ¢ < 1, > ¢" converges, so, by comparison, > ||e,|| also

neN neN
converges. : ©

i) LetusassumethatC > 1.Then, there exists an infinite number of n such that ||e, ||/ > 1,
i.e.||en]| > 1. So (||en]|)nen does not converge to 0, so neither does (e,,),en and then the
series diverges.

[ |
PROPOSITION 1.4.2 )
Let e € B. The sequence (||€™||™ )nen+ converges. We will call r(e) this limit.
PROOF : )
Foralln € N*, letu,, = ||e"||.
x As anorm, we have foralln € N*, u,, > 0
« Let us show that (u,),en+ is @ non increasing sequence :
tngy _ et
U len
_ Jlee]
=
len ||
il
< el
[
< [le|| T ]|
I T U
< llef[=+* [lef[=+
<1
So, (uy,)nen+ is @ non increasing sequence and lower bounded by 0 so it converges.
[ |
REMARK As (He”H%)neN* is a non increasing sequence, we have :
re) = lim [leal" = inf flea]™"
n——+00 " neN* "
And so, r(e) < |le]|
LEMMA 1.4.3 :
Lete € Band z € C. Then, r(ze) = |z| r(e).
PROOF : ) )
Foralln € N, [[(ze)"|| = [|z"e"|| = |2[" le"[| so [|(ze)" || = |=[ le"]| ™
Hence,
1 1
lim |[(ze)"||™ = lim |z]| |[e"||" i.e. r(ze) = |z| r(e)
n—o0 n—o0
[ |



PROPOSITION 1.4.4 :
i) Ifr(e) < 1, the series _ e" is normally convergent.
neN
i) Ifr(e) > 1, the series > e™ is divergent.
neN
PROOF: . o )
Asr(e) = lim |e"]|»,thenlim |e"||" = r(e). So,if:
n—+00 neN

i) r(e) < 1,bytheroottest, Y ||e"| converges, so the series > e™is normally convergent
neN neN

ii) 7(e) > 1, by the root test, the series ) e™ is divergent.
neN

LEMMA 1.4.5 :
Lete € B.Ifr(e) < 1, then 1 — e s invertible. Moreover,

(1—e)” Ze

PROOF :
Asr(e) < 1,thereexistst € Rsuchthatr(e) <t < 1.

Hence, as (He”]ﬁ) converges towards r(e), AN € N*,Vn > N, He"H% < tie. e <t
neN

But, > t" converges because ¢t < 1. So, by comparison,  |e™|| converges.
neN neN

Hence, > e™ converges normally. Moreover, as B is a Banach space, ) e" converges.
neN neN

Now, let us show that S := > e™is the inverse of e.
n=0

N
Forall N € N, let Sy := >_ €™ Then, we have:

n=0

. _ . . _ . _ N1y
(1—e)S NETOO(I e)Sn Nlir}rloo(l e ) =1

Hence, (1 —¢e)S = S(1 —e) =1.So:

1 —eisinvertibleand (1 —e)~ Z e’

|
PROPOSITION 1.4.6 @
Ife € G(B) then (e — z)~'is a limit of a normally convergent series on (0, ﬁ).
PROOF:
We have e~ z= e(1 — ze~'). Moreover, by lemma [1.4.3 - = |z|r(e7).
If 2] < —1 7> then r(ze™t) < 1.
So, by prop05|t|on 1.4.5,1 — ze~ ! is invertible and so (1 — ze~')~! = > (ze~!)". Moreover,
n=0
proposition - thls series is normally convergent on %(0, W> |



PROPOSITION 1.4.7 :
Lete € G(B). Then, d(0,0(e)) = -

PROOF :

By proposition , we know that R is analyticon p(e).Ase € G(B),e = e —Oisinvertible. So,
0 € p(e). Let r be the radius of convergence of the power series of R at the point 0.

But, by Cauchy’s theorem, we know that R is analytic on the largest disc B(0, r) included in its
holomorphic domain. But, by proposition , we know that R is holomorphic on its domain
of definition p(e). Sor = d(0, o (e)).

Moreover, forall zinC,e — z = e¢(1 — ze™ ).

So, forall zin C, e — zisinvertible if and only if 1 — ze~!is invertible.

Hence, for all 2 C C non empty open set, we have:

2z (e — z) tisanalyticon Qifand only if z — (1 — ze™ ')~ !is analytic on

+00
But, in the proof of, we showed that (e —2)7t= Z (e hrtiznif 2 € B(0, )) But, by
=0
the root test, we also know that if |z| > —+ ) then the series Y (e7h)ntlmis dlvergent.Then,
nEN

the radius of the power series of (1 — ze‘l) at the point 0 is e _1) But, by the equivalence
written above, this radius is also equal to r.
Hence,r = ( e d(0,0(e)) = 1

r(e=1)"

[
For now, we consider B as a commutative Banach algebra.
PROPOSITION 1.4.8 :
Lete, f € B. Then:
r(ef) <r(e)r(f)
PROOF:
Let n € N. Then, because B is a commutative Banach algebra:
1Cef)" 1= lle™ ™| < {le® [
1 1 1
So, [[(ef)" I < lle™ || [[f*[I. Hence, r(ef) < r(e)r(f) u

1.5 Properties of the spectum

PROPOSITION 1.5.1
Lete € B. Let (e,)nen € BY be a sequence such that e, Hi> e.

n—o0

Ifze () U ol(ex)thenz € o(e). Hence, [ U o(ex) C a(e).

neN k>n neNk>n

PROOF:

Let assume that z € p(e) = C\o(e). Then, there existse; > 0, B(z,21) C p(e).

- AS e I e, there exists n > 0 such that Vi > n, ||e, — e|| < es.

Let Eg9 = —3H(e ) e



Let e = min (g1, 7). Then, forall w in #(z, ¢),

er—w= (e, —e)+(e—2)+(z—w)
—— e =\
IlI<e invertible I.ll<e

= (e—2)(L+(e—2)""((ex — ) + (2 —w)))
But,

[(e = 2)" ((ex — ) + (2 —w))

(e = =) 1((ex — &) + (= —w))]
e =) 2¢

ININA

IN

2 <1

3

So, by proposition , there exists n > 0, such that Vk > n, e, — wisinvertiblei.e. w € p(ey).
So, there exists n > 0, such that Vk > n, #(z,¢) C p(ex), 50, B(z,e) C ) plex).

k>n
=

/;\ S
So, there existsn > Osuchthatz € [ p(ex) =C\ U o(ex) =C\ U o(eg).

k>n k>n k>n

Hence,z€ |J C\ U oler),ie.z¢ () U olex). [

neN k>n neN k>n

PROPOSITION 1.5.2 :
Lete € B. Let (e,)nen € BY be a sequence such that e, & e.

n—o0

Ifz¢ ( U oler) then z & o(e). Hence, o(e) € (| U o(ex).

neNk>n neNk>n

PROOF:

Letz¢ () U olex).

neNk>n

Hence,z € J C\ Ualen) = U N C\aler) = U N plew).

neN k>n neN k>n neNk>n

e
So,3dng € Nsuchthatz € [\ p(ex). Then, 3 > O such that Z(z,¢) C [ plek).
k>ng k>ng
Hence, for all k > ng, e, — z isinvertible.
Moreover,as #B(z,¢) C () pler), Vk > ng,d(0,0((er, — 2)71)) > e.
k>n0

As &)e N > ngsuchthatVn > N, |le, —¢| <

n—>oo

So, we have:

£
-

r((ex —2) " (en —e))

So, by proposition , 1+ (ey — 2z)7Y(enx — e) isinvertible.
But,e —z=e—exy+tey—2z=((exy —2) He—en)+1)(exy — 2).
So,as ey — zisalsoinvertible, e — zisinvertible.

Hence, z € o(e). So the contrapositive gives: z € o(e) = z € (| U o(ex).
neNk>n



Then, we showed o(e) C (N U o(ek).

COROLLARY 1.5.3 :
Lete € B. Let (e,)nen € BY be a sequence such that e, & e. Then:

n—o0

o(e) = m U ol(er).

neN k>n

10



2 Application

2.1 Somereminders on Laurent series

LEMMA 2.1.1 :
Let f : (0, Ry, R2) — C holomorphic. Then

Vry,re € |Ry, Ral, f(z)dz = f(z)dz

T, I,
PROOF:
LetJ: R E]Rl, R2[|—> fFR f(Z)dZ

Let g the holomorphic map defined by Vz € € (0, Ry, Rs), g(2) := zf(2).
Let R €| Ry, Ry[. With the parametrization of 'g, 2 = Re® fort € [0, 27], we have :

2w
J(R) =i / g(Rei")dt
0
So, by differentiation under integral sign theorem, we have J differentiable and

1

2m
VR € |Ry, Ry, J'(R) = Z/ e'g (Re™)dt = —/ g'(2)dz
0 R Jrp,

But, we also have, as the integral of a derivative on a closed path,

VR € |Ry, RQ[,/ g (z)dz=0,ie.J' (R)=0

I'r
So, J is constant. |

PROPOSITION 2.1.2 : LAURENT SERIES
Let f : €(0, Ry, R2) — C holomorphic.

+oo
Then, there exists a sequence (ay)nez € CsuchthatVz € €(0, Ry, Ra), f(2) = > anz".

n=—oo

Moreover, this series normally converges on all compact include in € (0, Ry, Ry).

PROOF:
Let A € CK(O, Ry, Rg)
If we consider the following map :

g: CK(O, R, RQ) — C
FO) siz=A
z { f(z;:{()\) si» # A

The map g is continuous and its restriction on €’(0, Ry, R2)\{\} is holomorphic. So, we can
apply the below lemma. We can set 1, 75 such that Ry < r; < |A\| < r2 < Ry and so, we have

/1“ g(z)dz—/F g(z)dz=0

2 1

But, Ind(\,T',,) = 0and Ind(X, I',,) = 1. It means that 5 <fr el Zd_ZA) =1.

And, by those two equalites, we can deduce that:

FO) = — ( - (_Z))\dz - (2) dz) (1)

21 r, %= A

11



However, for z € Csuch that |z| = r, > |A|i.e. |2]| < 1, we have:

1 1 n f(z +oofz N
z—/\:; Zz” Z (—)/\ Zz7§+z/\

n= 0 n=0

For the same reason, for z € C such that |z| = r; < A i.e. |2| > 1, we have:

+oo +oo -1
I B R X
B D N N HZ:OZ n:zoo Znt

Hence,

Z
Z ZnJrl

So, by () and the below lemma (applied to z +— f,fil holomrphic on €(0, Ry, R»)), we have

+oo
n f(2)
Q)= > a,\"whereVn € Z,a, = -— 5ir | Zan

n=—oo

z independantly of the choice of r € | Ry, Ry|.

As power series are normally convergent on all compacts included on their convergence disk,

we can deduce that } a,z" normally converges on all compactincludeon (0, Ry, R;). W
neZ

PROPOSITION 2.1.3 :
Let €(0, Ry, Ry) C Csuchthat% C €(0,Ry,Ry)and f € H(€(0, Ry, R2)).
Then f has an absolutely convergent Fourier series.

PROOF:
The map f is holomorphic on the annulus, so by the below proposition, f can be expanded in
Laurent series. So there exists (a,,),en € C such that

Vz € €(0,Ry, Ry), f(2) = Y an2"

neL

As € is a compact include in €' (0, Ry, R»), the series > a,, is normally convergent.

neZ
So, the family (a,,),cz is summable. But, we have :
1 f(z) N ICON / 0)ind
Vn€Z,a, = — dz = — ie”df = Ne=mdl = ¢,
nea&a AT @ ontl < T 2Z7T : ez(n—‘rl f c (f)

As ) a, is absolutely convergent, then ) . c,(f) is absolutely convergent. And so, f has an

neL
absolutely convergent Fourier series. [ |

12



2.2 Resultson /(Z)-space

DEFINITION 2.2.1 : (/' (7Z)-SPACE)
The (*(Z) space is defined by :

+oo
MZ) = {T = (ti)rez € C% suchthat |||, = Y |t < +oo}

k=—o00

PROPOSITION 2.2.2 :
The space (*(7Z) is a Banach algebra in which the product of two elements is defined by convo-
lution :

“+o00
VS = (Sk)keZ;T = (tkz>kEZ - gl(Z), TS = (pk>kEZ whereVk € Z,pk = Z tjsk—j

j=—o0

+oo
REMARK We canalso write, forall kinZ,p, = > tjsp—j = > t;s
j=—o0 Jjt+l=k

PROOF :

— Letus show that (¢1(Z), ||.||) is complete. Let (T},),.cz a Cauchy sequence of /1 (Z). Then :

Ve > 0,3dN e N,Vp,q > N, ||T, = T,||, <e ()

+00
ie. Y |Top—Tyxl<e

k=—o00

In particular, Ve > 0,3N € N,Vp,q > N.Vk € Z,|T,, — T, x| <e.

So, for all k in Z, (T, )nen is @ Cauchy sequence in (C, |.|) which is complete. Then,
(T, )nen converges, we denote Tj, € Cits limit. Let 7" := (T} ez

But, (x) withe =1 > 0 gives:

dN € N,Vp,q > N, ||T, — T,]|, £1

K
Let X € N. Then,Vp > N, Z |Tp7k' — TN,k| < 1.
k=—K

K
So, when p goesto +oo,we have: > |1, — Tyl < 1.
hm— K N——~——
| T = | Tov i | <

K K +oo
So, Yo |Tul < > [Tanel+1< X0 |Typl +1=|Tn]];.
k=K k=K k=—oo

So, > |Ty| conve;ges ie.T e 61(Z).7
Then, when ¢ goes to +oo in (x), we have :

¥e>0,3N eN,Vp> N, |T, - T|, < ¢

I-1
This means T, —1> T.

n—oo

Hence, (¢*(Z), ||.||,) is a Banach space.

— Let us show that the convolution is well defined.

AsT € (1(7Z),ty, |k‘—> 0, and then (¢ )ren is bounded by a constant M € R.
—+00

13



So, forallj € Z,forallk € Z,|tjsi—j| < M |sx_;| and then,as S € (*(Z), we have
(tjsk—j)jel et (Z) ie. (tjsk—j)jEZ issummable.

But, we have
Vi€ Z, Y [tisiil = 1651 ) skl = [t Isil

kEZ keZ keZ

+oo
So,forallj € Z, ) |t;s,—;| convergesandits sumis > |t;se—;| = |t;]||s]l; -
kGZ k —00

Moreover, Z tisk—i| = |Is]l; Z t;]. So, > Z |t;sk—;| converges and its sum is
JEZL k=—o00 JEZ k=—00

Z Z 55531 = llsly [I#]ly-

Jj=—00 k=—00

Hence, by Fubini’s theorem, (¢;sx_; )k jez is summable and :

S e =3 (z 4 |sk_jr) il sl < oc

(4,k)eZ? keZ \jez
+o0o +oo L
Then, asVk € Z, Z thk,j < Z ’tj‘ ‘Skfj| , (pk)kez e/ (Z)
j=—00 Jj=—00

So, the convolution of 7" and S is well defined in ¢*(Z) and we have :

+oo +o0 +o0 +oo
TSI = > [ D tises| < D <Z |tj||8k—j!> =Tl 151,
k=—o00 [j=—0 k=—00 \j=—o00

Let us show that the convolution is associative.
Let R = (Tk)kez, S = (Sk)kEZ7 T = (tk)kEZ < EI(Z) Then, forallkinZ:

(R(ST))i = > _ r;(ST),

j+H=k

= Z tj Z Sith

jHl=k i+th=l

Z ’f’jSith

j+ith=k

=Y (Z rjs,-) th

I+h=k \j+i=l

= ) (RSt
l+h=k

= ((RS)T)x

Hence, R(ST) = (RS)T. So, the convolution is associative.
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PROPOSITION 2.2.3 :
The space (*(Z) is commutative.

PROOF:
Let T, S e gl(Z), TS = (pk)kez and ST = (qk)kez. Letk € Z.

u=k—j

!
Dk = thsk—j = Ztk—usu = Z Sulk—u = Q&
JEZ UEZL U€EZ
So,forallk € N,p,. = qi, i.e. TS = ST [ |

| NoTaTion We will write BB for ¢!(Z) in the remainder of the document

2.3 Wiener’s theorem

REMARK We can identifyR/QWZ andT :={z € C,|z| = 1}.
Indeed, the following map defines an isomorphism between R/27TZ and T :

vi|Roz — T
0 — e

DEFINITION 2.3.1 : (EXPONENTIAL FAMILY)
Forallk € Z, Letus define:e; : € R — e ¢ T.
We will call (ex) ez the exponential family.

DEFINITION 2.3.2 :(FOURIER COEFFICIENTS)

Forall f € L'(T), we call Fourier coefficients of f the following sequence (f(k))xez defined
by :

Vk € Z, f(k / F(0)e~*0d0

DEFINITION 2.3.3 : (FOURIER SERIES)
Forall f € L'(T), we can associate the following series called Fourier series of f :

> (ke

keZ

| NOTATION ForT = (7% )kez € B, wedenote Ay := > 7pep.
k=—o00
PROPOSITION 2.3.4 :
LetT = (7y)kez € B. Forall 6 € R, Ar(0) is an absolutely convergent series.

PROOF:
Letd € R.AsT € B,

o
Z |Tkex(6)] = Z |Tk||6k )| < 400

k=—00 k=—o00

PROPOSITION 2.3.5 :
LetT = (Tk>k€Z7S = (Sk)keZ e B.
Then, forall 0 € R, Aps(0) = Ar(0)As(9).
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PROOF:

Letd € R.

AsT,S € B, TS := (pr)rez € B, the two series Ar(6) and Ag(6) are absolutely convergent.
So the Cauchy product of the two series converges.So, we have :

Ar(0)Ag(h) = (Z Tkek(9)> (Z skek(6)>

k=—o0 k=—o00

- Z Z i€ (0)sk—jer—;(0)

k=—00 j=—00

= Z Z Tjsk_jek(Q)

k=—00 j=—00
00

= Z Prer(6)

k=—o0

= Arg(0)

PROPOSITION 2.3.6 :
LetT = (Tk)kGZ € B. Then, O'(T) = AT(R)

PROOF:

i)

i)

Let us suppose that A+ has an analytic continuation on a neighbourhood of %" that we
denote V. Let us denote f this continuation.
Then, as f is continuous, there exists VV/ C V such that:

¢ CV'andVze V' f(z) —C#0ie (f—)(2) #0

Hence,g : z € V' — (f(2) — )" is well defined and holomorphic. So, by proposition
, g has an absolutely convergent Fourier series.

Let us denote R := (§(n))nez. Then,wehave R € Band R(T' — () = (T' - ()R = 1.
Hence, T — ( is invertible. Then, { & o(T).

So we showed o(7T") C Ap(R).

Converserly, if € Ar(R) there exists z € Rsuchthat( = Ap(z)i.e. Ar(z) — ¢ = 0then
T — (isnotinvertible. So, A7(R) C o(T).

Now, we consider the general case.
Foralln € N, let T}, :== (7,,x)xez Where

Tog = T itk € [—n,n]
0 else

Then, as trignometric polynomials, the 7;, have an analytic continuation on a neighbou-
rhood of €. So, we can apply the first point to them. Moreover :
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Ir-zl=| 3 nt 3w

k<-n—1 k>n+1

< Z Tk|| + ZTk

k<—(n+1) k>n+1

< D mlo+ Y m

k<—(n+1) k>n+1
—_——— ———

rest of a convergent series  rest of a convergent series

Hence, ||T'— T,|| — 0.
n—oo

Moreover, with a similar proof, we can show that:

Vo € R, |[Ar(0) — Ar, (0)] < Z | 7| + Z | 7% | e 0 independantly of ¢

k<—(n+1) k>n+1

So, (A7, )nen Uniformly converges on R towards Ar.

Then, by corollary ,
first point
oM =NUem) = NUaru®

neN k>n neN k>n

Letusshowthat (| | Ar,(R) = Ap(R):

neN k>n
— Letye N U An(®).
neN k>n

Then,Vn € N,y € |J A (R).

k>n
So, letn € N*, 3k, > n, 3z, € Rsuchthat|y — Ag, (z,)] < 2.
As the maps Ar, are 27-periodic, we can suppose that (z,),en € [0, 27]. So,
(xn)nen+ IS @ sequence in a compact set so it admits a convergent subsequence :
there exist ¢ : N* — N* anincreasing map and z in [0, 27| such that z 4, Bl

Hence, as (A1, )ken converges uniformely towards At on [0, 27], we have :

Yy = lim ATk ([E¢(n)) = AT(J/’) c AT(R)

n—00 é(n)

— Lety € Ar(R). Then, there exists = € R such that

+o00
y=Ar(z)= Z ek

k=—o00

= lim ATN (iL‘)

N—+o00

neN k>n

So,Ar(R) € N U Ar (R).

neNk>n
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Then we showed that

THEOREM 2.3.7 : WIENER’S THEOREM

Let f : R — C be a 2w-periodic continuous map.

If f has an absolutely convergent Fourier series and does not vanish anywhere, then f~! has an
absolutely convergent Fourier series.

PROOF:
As f has an absolutely convergent Fourier series, T' := (f(n))nez € Band we have f = Arp
almost everywhere because f is continuous. Hence, thanks to proposition , we have:

o(T) = Ar(R) = f(R)

So, since f does not vanish anywhere, 0 ¢ f(R) = o(T). Then, T — 0 = T is invertible. Let us
denote S its inverse. Then, by proposition ,

fAs=ArAg=App1 =AM, =¢p =1

As the usual product on maps is commutative, f isinvertible and f~! = Ag.
Hence, f~! has an absolutely convergent Fourier series. |
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