UNIVERSITE E FRANCHE-COMTE

UFR ST - Université de Franche-Comté

M₁ Project

A proof of Weiner's Theorem

GIROD Manon & MATHIEU Alix M1 Mathématiques

Tuteur : M. Boussaid

Contents

 $\mathscr{B}(z,\varepsilon)\;$ Ball of radius $\varepsilon>0$ centered at point z

1	General statements on Banach algebras			
	1.1	Some reminders on Banach spaces	2	
	1.2	First definitions and properties	3	
	1.3		5	
	1.4		5	
	1.5	Properties of the spectum	8	
2	Application			
	2.1	Some reminders on Laurent series	.1	
	2.2	Results on $\ell^1(\mathbb{Z})$ -space \ldots 1	.3	
	2.3	Wiener's theorem	.5	
N	ome	enclature		
\mathscr{C}	U	Jnit circle		
$\mathscr{C}($	$0, R_1$	(R_2) Annulus defined by an open region in complex plane such that $0 \leq R_1 < z < R_2$		
Γ.,	C	Circle of radius $r > 0$		

General statements on Banach algebras 1

Some reminders on Banach spaces

For this section, $(E, \|.\|)$ is a normed vector space.

DEFINITION 1.1.1 : (CONVERGENT SEQUENCE)

Let $(e_n)_{n\in\mathbb{N}}$ be a sequence in E and e in E. We say that $(e_n)_{n\in\mathbb{N}}$ converges toward e in E when : $\|e_n-e\| \underset{n\to\infty}{\longrightarrow} 0$.

DEFINITION 1.1.2 : (CAUCHY SEQUENCE AND BANACH SPACE)

Let $(e_n)_{n\in\mathbb{N}}$ be a sequence in E.

lacksquare We say that $(e_n)_{n\in\mathbb{N}}$ is a **Cauchy sequence** when :

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall p, q \ge n, ||e_p - e_q|| \le \varepsilon.$$

 \blacktriangleright We say that $(E, \|.\|)$ is a **Banach space** when any Cauchy sequence of E is convergent in

DEFINITION 1.1.3 : (CONVERGENT SERIES AND NORMALLY CONVERGENT SERIES)

Let $(e_n)_{n\in\mathbb{N}}$ be a sequence in E.

- ▶ We say that $\sum_{n \in \mathbb{N}} e_n$ is **convergent in** E when $\left(\sum_{n=0}^N e_n\right)_{N \in \mathbb{N}}$ converges in E.
- ightharpoonup We say that $\sum_{n\in\mathbb{N}}^{\infty}e_n$ is **normally convergent** when $\sum_{n\in\mathbb{N}}\|e_n\|$ converges (in \mathbb{R}).

THEOREM 1.1.4: CHARACTERISATION OF BANACH SPACES

Normed vector space $(E, \|.\|)$ is a Banach space if and only if any normally convergent series is convergent.

PROOF:

— Let us assume that $(E, \|.\|)$ is a Banach space. Let $(e_n)_{n\in\mathbb{N}}$ be a sequence in E such that $\sum\limits_{n\in\mathbb{N}}e_n$ is normally convergent.

Let k > l. Then :

$$\left\| \sum_{n=0}^{k} e_n - \sum_{n=0}^{l} e_n \right\| = \left\| \sum_{n=l+1}^{k} e_n \right\|$$

$$\leq \sum_{n=l+1}^{k} \|e_n\|$$

$$\leq \sum_{n=l+1}^{+\infty} \|e_n\|$$

But, $\sum_{n\in\mathbb{N}}e_n$ is normally convergent so $\sum_{n\in\mathbb{N}}\|e_n\|$ converges. Hence, $\sum_{n=l+1}^{+\infty}\|e_n\|$ is a remainder

2

of a convergent series. So, $\sum_{n=l+1}^{+\infty} \|e_n\| \underset{l\to\infty}{\longrightarrow} 0$.

So, $\left(\sum_{n\in\mathbb{N}}e_n\right)_{n\in\mathbb{N}}$ is a Cauchy sequence is Banach space E.

Hence,
$$\left(\sum_{n\in\mathbb{N}}e_n\right)_{n\in\mathbb{N}}$$
 converges in E which means $\sum_{n\in\mathbb{N}}e_n$ converges.

 Let us assume that any normally convergent series is convergent. Let $(e_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in E. Then,

$$\forall \varepsilon > 0, \exists n \in \mathbb{N}, \forall p, q \ge n, ||e_p - e_q|| \le \varepsilon$$

For
$$\varepsilon=\left(\frac{1}{2}\right)^0=1>0, \exists n_0\in\mathbb{N}, \forall p,q\geq n_0, \|e_p-e_q\|\leq \left(\frac{1}{2}\right)^0.$$
 So, in particular, $\|e_{n_0+1}-e_{n_0}\|\leq \left(\frac{1}{2}\right)^0.$

For
$$\varepsilon = \left(\frac{1}{2}\right)^1$$
, $\exists n_1 > n_0, \forall p, q \geq n_1, \|e_p - e_q\| \leq \left(\frac{1}{2}\right)^1$.
So, in particular, $\|e_{n_1+1} - e_{n_1}\| \leq \left(\frac{1}{2}\right)^1$.

Hence, by induction, we built an increasing sequence $(n_k)_{k\in\mathbb{N}}$ such that :

$$\forall k \in \mathbb{N}, \|e_{n_k+1} - e_{n_k}\| \le \left(\frac{1}{2}\right)^k$$

But, $\left(\frac{1}{2}\right)^k$ is the term of a convergent series. So, $\sum\limits_{k\in\mathbb{N}}\|e_{n_k+1}-e_{n_k}\|$ is convergent *i.e.* $\sum\limits_{k\in\mathbb{N}}(e_{n_k+1}-e_{n_k})$ is normally convergent. Hence, by hypothesis, $\sum\limits_{k\in\mathbb{N}}(e_{n_k+1}-e_{n_k})$ converges

But, for all
$$K\in\mathbb{N},$$
 $\sum\limits_{k=0}^{K}(e_{n_k+1}-e_{n_k})=e_{n_K+1}-e_{n_0}.$

So,
$$e_{n_K+1} = \underbrace{e_{n_0}}_{\text{constant}} + \underbrace{\sum_{k=0}^K (e_{n_k+1} - e_{n_k})}_{\text{kence, } (e_{n_K+1})_{K \in \mathbb{N}} \text{ is convergent in } E.$$

So, $(e_n)_{n\in\mathbb{N}}$ is a Cauchy sequence which admits a convergent subsequence. So, $(e_n)_{n\in\mathbb{N}}$ converges in E.

Hence, we showed that any Cauchy sequence of E converges in E. So, (E, ||.||) is a Banach space.

First definitions and properties

DEFINITION 1.2.1: (ALGEBRA)

Let \mathbb{K} be a field.

An **algebra** \mathcal{B} is a \mathbb{K} -vectorial space $(\mathcal{B},+,.)$ endow with an internal associative bilinear multiplication law \times , *i.e.*, for all $e, f, g \in \mathcal{B}$:

i)
$$e \times f \in \mathcal{B}$$

ii)
$$(e \times f) \times a = e \times (f \times a) = e \times f \times a$$

$$\begin{split} &\text{ii)} \ \ e \times f \in \mathcal{B} \\ &\text{iii)} \ \ (e \times f) \times g = e \times (f \times g) = e \times f \times g \\ &\text{iiii)} \ \ e \times (f+g) = e \times f + e \times g \text{ and } (e+f) \times g = e \times g + f \times e \\ &\text{iv)} \ \ \forall \lambda, \mu \in \mathbb{K}, \ (\lambda.e) \times (\mu.f) = (\lambda \mu).(\mu \times f) \end{split}$$

iv)
$$\forall \lambda, \mu \in \mathbb{K}$$
, $(\lambda.e) \times (\mu.f) = (\lambda \mu).(\mu \times f)$

DEFINITION 1.2.2 : (NORMED ALGEBRA)

We say that an algebra \mathcal{B} is **normed** if we can endow \mathcal{B} with a norm $\|.\|$ such that :

$$\forall e, f \in \mathcal{B}, \|ef\| < \|e\| \|f\|$$

REMARK In such an algebra, we can prove by induction that: $\forall x \in \mathcal{B}, \forall n \in \mathbb{N}, ||e^n|| \leq ||e||^n$.

DEFINITION 1.2.3: (BANACH ALGEBRA)

A **Banach algebra** \mathcal{B} is a normed algebra $(\mathcal{B}, \|.\|)$ over \mathbb{K} and a Banach space endowed with the metric induced by the norm $\|.\|$.

DEFINITION 1.2.4 : (UNIT ELEMENT)

A **unit element** 1 of \mathcal{B} is an element such that for all $e \in \mathcal{B}, \ e1 = 1e = e$ and verifying ||1|| = 1.

REMARK An algebra doesn't necessary have a unit but if it exists, then it is unique.

NOTATION We will write in the remainder of the document, for all $\lambda \in \mathbb{K}$, λ for $\lambda 1$.

DEFINITION 1.2.5 : (INVERTIBLE)

An element $e \in \mathcal{B}$ is said **invertible** if there exists $f \in \mathcal{B}$ such that ef = fe = 1. f is unique and will be denoted e^{-1} .

REMARK The set of invertible elements of \mathcal{B} endowed with \times is a multiplicative group denoted $G(\mathcal{B})$.

PROPOSITION 1.2.6:

Let $e \in \mathcal{B}$. If ||e|| < 1 then

$$1-e$$
 is invertible and $(1-e)^{-1}=\sum_{i=0}^{\infty}e^{i}$

PROOF:

For $N \in \mathbb{N}$, let $S_N = \sum\limits_{n=0}^N e^n$. As \mathcal{B} is a Banach algebra, we have for all n in \mathbb{N} , $\|e^n\| \leq \|e\|^n$. But, we supposed that $\|e\| < 1$. So, $\sum\limits_{n \in \mathbb{N}} \|e\|^n$ is convergent. So is $\sum\limits_{n \in \mathbb{N}} \|e^n\|$. Then, $\sum\limits_{n \in \mathbb{N}} e^n$ is normally convergent. Hence, as \mathcal{B} is a Banach space, by proposition 1.1.4, $\sum\limits_{n \in \mathbb{N}} e^n$ converges in \mathcal{B} .

Let
$$S = \sum_{n=0}^{\infty} e^n$$
 be its limit.

But, as sums of powers of e, we have : $\forall N \in \mathbb{N}, S_N(1-e) = (1-e)S_N = 1-e^{N+1}$. So, $S(1-e) = (1-e)S = \lim_{N \to +\infty} (1-e^{N+1}) = 1$.

Hence,
$$1-e$$
 is invertible and $(1-e)^{-1}=S=\sum\limits_{n=0}^{\infty}e^{n}$

Remark We also have if ||e|| < 1, that 1 + e invertible and $(1 + e)^{-1} = \sum_{i=0}^{\infty} (-1)^i e^i$

DEFINITION 1.2.7 : (RESOLVENT SET)

The **resolvent set** of $e \in \mathcal{B}$ denoted $\rho(e)$ is defined by :

$$\rho(e) = \{ \zeta \in \mathbb{C}, \ e - \zeta \text{ is invertible} \}$$

DEFINITION 1.2.8 : (RESOLVENT MAP)

The **resolvent** of $e \in \mathcal{B}$ is defined by the following map:

$$R_e: \left| \begin{array}{ccc} \rho(e) & \longrightarrow & G(\mathcal{B}) \\ \zeta & \longmapsto & (e-\zeta)^{-1} \end{array} \right|$$

4

DEFINITION 1.2.9: (SPECTRUM)

The **spectrum** of $e \in \mathcal{B}$ is the complementary set in the complex plane of the resolvent set of e. It will be denoted:

$$\sigma(e) := \mathbb{C} \backslash \rho(e)$$

Properties of the resolvent 1.3

PROPOSITION 1.3.1:

Let $e \in \mathcal{B}$. Then, the set $\rho(e)$ is open in \mathbb{C} . Moreover, the resolvent $R_e: z \in \rho(e) \mapsto (e-z)^{-1} \in G(\mathcal{B})$ is analytic.

PROOF:

Let $a \in \rho(e)$, we have for all $z \in \mathbb{C}$:

$$e - z = e - a + a - z$$

= $(e - a)(1 - (e - a)^{-1}(z - a))$

If $|z-a|<\frac{1}{\|(e-a)^{-1}\|}$, then by proposition 1.2.6, $1-(e-a)^{-1}(z-a)$ is invertible and so is e-z. So, $\mathscr{B}(a,\frac{1}{\|(e-a)^{-1}\|})\subseteq \rho(e)$. Then, the resolvent set $\rho(e)$ is open. Moreover, the proposition also

$$\forall z \in \mathcal{B}(a, \frac{1}{\|(e-a)^{-1}\|}), (e-z)^{-1} = (e-a)^{-1} \left(\sum_{n \ge 0} ((z-a)(e-a)^{-1})^n \right)$$

This shows the resolvent map is analytic.

PROPOSITION 1.3.2:

Let $e \in \mathcal{B}$.

The resolvent map $R_e: z \in \rho(e) \mapsto (e-z)^{-1} \in G(\mathcal{B})$ is holomorphic on $\rho(e)$.

PROOF:

Let $z_0 \in \rho(e)$. We have :

$$\begin{split} (z-z_0)^{-1}[R_e(z)-R_e(z_0)] &= (z-z_0)^{-1}[(e-z)^{-1}-(e-z_0)^{-1}] \\ &= (z-z_0)^{-1}(e-z)^{-1}(e-z_0)^{-1}[e-z_0-e+z] \\ &= (z-z_0)^{-1}(e-z)^{-1}(e-z_0)^{-1}(z-z_0) \\ &= (e-z)^{-1}(e-z_0)^{-1} \\ &\stackrel{\|.\|}{\underset{z\to z_0}{\longrightarrow}} (e-z_0)^{-2} \text{ by continuity (from analyticity 1.3.1) of the resolvent of } e \end{split}$$

Properties of a particular radius 1.4

Here is a little reminder:

PROPOSITION 1.4.1: ROOT TEST

Let
$$(e_n)_{n\in\mathbb{N}}\subseteq\mathcal{B}$$
. Let $C:=\overline{\lim_{n\to+\infty}\sqrt[n]{\|e_n\|}}$

- Let $(e_n)_{n\in\mathbb{N}}\subseteq\mathcal{B}$. Let $C:=\overline{\lim_{n\to+\infty}\sqrt[n]{\|e_n\|}}$ i) If C<1, the series normally converges (so converges if the space is a Banach).
 - ii) If C > 1, the series diverges.

PROOF:

- i) Let us assume that C<1. Let $q\in\mathbb{R}$ such that C< q<1. As C< q, there exists $N\in\mathbb{N}$ such that $\forall n\geq N, \|e_n\|^{1/n}\leq q$. Then $(\|e_n\|)_{n\geq N}$ is upper bounded by a geometric sequence $(q^n)_{n\geq N}$. But, as $q<1,\sum\limits_{n\in\mathbb{N}}q^n$ converges, so, by comparison, $\sum\limits_{n\in\mathbb{N}}\|e_n\|$ also converges.
- ii) Let us assume that C>1. Then, there exists an infinite number of n such that $\|e_n\|^{1/n}\geq 1$, i.e. $\|e_n\|\geq 1$. So $(\|e_n\|)_{n\in\mathbb{N}}$ does not converge to 0, so neither does $(e_n)_{n\in\mathbb{N}}$ and then the series diverges.

PROPOSITION 1.4.2:

Let $e \in \mathcal{B}$. The sequence $(\|e^n\|^{\frac{1}{n}})_{n \in \mathbb{N}^*}$ converges. We will call r(e) this limit.

PROOF:

For all $n \in \mathbb{N}^*$, let $u_n = \|e^n\|^{\frac{1}{n}}$.

- * As a norm, we have for all $n \in \mathbb{N}^*, u_n \geq 0$
- * Let us show that $(u_n)_{n\in\mathbb{N}^*}$ is a non increasing sequence :

$$\frac{u_{n+1}}{u_n} = \frac{\|e^{n+1}\|^{\frac{1}{n+1}}}{\|e^n\|^{\frac{1}{n}}}$$

$$= \frac{\|e^n e\|^{\frac{1}{n+1}}}{\|e^n\|^{\frac{1}{n}}}$$

$$\leq \frac{\|e^n\|^{\frac{1}{n+1}}\|e\|^{\frac{1}{n+1}}}{\|e^n\|^{\frac{1}{n}}}$$

$$\leq \|e^n\|^{\frac{-1}{n(n+1)}}\|e\|^{\frac{1}{n+1}}$$

$$\leq \|e\|^{\frac{-1}{n+1}}\|e\|^{\frac{1}{n+1}}$$

$$\leq 1$$

So, $(u_n)_{n\in\mathbb{N}^*}$ is a non increasing sequence and lower bounded by 0 so it converges.

REMARK As $(\|e^n\|^{\frac{1}{n}})_{n\in\mathbb{N}^*}$ is a non increasing sequence, we have :

$$r(e) = \lim_{n \to +\infty} ||e_n||^{1/n} = \inf_{n \in \mathbb{N}^*} ||e_n||^{1/n}$$

And so, $r(e) \leq ||e||$

LEMMA 1.4.3:

Let $e \in \mathcal{B}$ and $z \in \mathbb{C}$. Then, $r(ze) = |z| \, r(e)$.

PROOF:

For all $n\in\mathbb{N}$, $\|(ze)^n\|=\|z^ne^n\|=|z|^n\,\|e^n\|$ so $\|(ze)^n\|^{\frac{1}{n}}=|z|\,\|e^n\|^{\frac{1}{n}}.$ Hence,

$$\lim_{n \to \infty} \|(ze)^n\|^{\frac{1}{n}} = \lim_{n \to \infty} |z| \|e^n\|^{\frac{1}{n}} \text{ i.e. } r(ze) = |z| \, r(e)$$

i) If r(e)<1, the series $\sum\limits_{n\in\mathbb{N}}e^n$ is normally convergent. ii) If r(e)>1, the series $\sum\limits_{n\in\mathbb{N}}e^n$ is divergent.

PROOF:

As $r(e)=\lim_{n\to +\infty}\|e^n\|^{\frac{1}{n}}$, then $\overline{\lim_{n\in \mathbb{N}}}\|e^n\|^{\frac{1}{n}}=r(e)$. So, if :

i) r(e) < 1, by the root test, $\sum_{n \in \mathbb{N}} \|e^n\|$ converges, so the series $\sum_{n \in \mathbb{N}} e^n$ is normally convergent

ii) r(e)>1, by the root test, the series $\sum\limits_{n\in\mathbb{N}}e^n$ is divergent.

LEMMA 1.4.5:

Let $e \in \mathcal{B}$. If r(e) < 1, then 1 - e is invertible. Moreover,

$$(1-e)^{-1} = \sum_{n=0}^{+\infty} e^n$$

PROOF:

As r(e) < 1, there exists $t \in \mathbb{R}$ such that r(e) < t < 1.

Hence, as $\left(\|e^n\|^{\frac{1}{n}}\right)_{n\in\mathbb{N}}$ converges towards $r(e),\exists N\in\mathbb{N}^*, \forall n\geq N, \|e^n\|^{\frac{1}{n}}\leq t$ i.e. $\|e^n\|\leq t^n$. But, $\sum\limits_{n\in\mathbb{N}}t^n$ converges because t<1. So, by comparison, $\sum\limits_{n\in\mathbb{N}}\|e^n\|$ converges. Hence, $\sum\limits_{n\in\mathbb{N}}e^n$ converges normally. Moreover, as \mathcal{B} is a Banach space, $\sum\limits_{n\in\mathbb{N}}e^n$ converges.

Now, let us show that $S:=\sum\limits_{n=0}^{\infty}e^{n}$ is the inverse of e.

For all $N \in \mathbb{N}$, let $S_N := \sum_{n=0}^N e^n$. Then, we have :

$$(1 - e)S = \lim_{N \to +\infty} (1 - e)S_N = \lim_{N \to +\infty} (1 - e^{N+1}) = 1$$

Hence, (1 - e)S = S(1 - e) = 1. So:

$$1-e$$
 is invertible and $(1-e)^{-1}=\sum_{n=0}^{+\infty}e^n$

PROPOSITION 1.4.6:

If $e\in G(\mathcal{B})$ then $(e-z)^{-1}$ is a limit of a normally convergent series on $\mathscr{B}(0,rac{1}{r(e^{-1})})$.

PROOF:

We have $e-z=e(1-ze^{-1}).$ Moreover, by lemma 1.4.3, $r(ze^{-1})=|z|\,r(e^{-1}).$ If $|z|<rac{1}{r(e^{-1})}$, then $r(ze^{-1})<1$.

So, by proposition 1.4.5, $1-ze^{-1}$ is invertible and so $(1-ze^{-1})^{-1}=\sum_{n=0}^{\infty}(ze^{-1})^n$. Moreover, proposition 1.4.4, this series is normally convergent on $\mathscr{B}(0,\frac{1}{r(e^{-1})})$.

PROPOSITION 1.4.7:

Let
$$e \in G(\mathcal{B})$$
. Then, $d(0,\sigma(e)) = rac{1}{r(e^{-1})}$.

PROOF:

By proposition 1.3.1, we know that R is analytic on $\rho(e)$. As $e \in G(\mathcal{B}), e = e - 0$ is invertible. So, $0 \in \rho(e)$. Let r be the radius of convergence of the power series of R at the point 0.

But, by Cauchy's theorem, we know that R is analytic on the largest disc $\mathcal{B}(0,r)$ included in its holomorphic domain. But, by proposition 1.3.2, we know that R is holomorphic on its domain of definition $\rho(e)$. So $r = d(0, \sigma(e))$.

Moreover, for all z in \mathbb{C} , $e-z=e(1-ze^{-1})$.

So, for all z in \mathbb{C} , e-z is invertible if and only if $1-ze^{-1}$ is invertible.

Hence, for all $\Omega \subseteq \mathbb{C}$ non empty open set, we have :

$$z\mapsto (e-z)^{-1}$$
 is analytic on Ω if and only if $z\mapsto (1-ze^{-1})^{-1}$ is analytic on Ω

But, in the proof of 1.4.6, we showed that $(e-z)^{-1}=\sum\limits_{n=0}^{+\infty}(e^{-1})^{n+1}z^n$ if $z\in \mathscr{B}(0,\frac{1}{r(e^{-1})})$. But, by the root test, we also know that if $|z|>\frac{1}{r(e^{-1})}$, then the series $\sum\limits_{n\in\mathbb{N}}(e^{-1})^{n+1}z^n$ is divergent. Then, the radius of the power series of $(1-ze^{-1})^{-1}$ at the point 0 is $\frac{1}{r(e^{-1})}$. But, by the equivalence written above, this radius is also equal to r.

Hence,
$$r=rac{1}{r(e^{-1})}$$
 i.e. $d(0,\sigma(e))=rac{\cdot}{r(e^{-1})}.$

For now, we consider \mathcal{B} as a commutative Banach algebra.

PROPOSITION 1.4.8:

Let $e, f \in \mathcal{B}$. Then :

$$r(ef) \le r(e)r(f)$$

PROOF:

Let $n \in \mathbb{N}$. Then, because \mathcal{B} is a commutative Banach algebra:

$$||(ef)^n|| = ||e^n f^n|| \le ||e^n|| \, ||f^n||$$

So,
$$\|(ef)^n\|^{\frac{1}{n}} \le \|e^n\|^{\frac{1}{n}} \|f^n\|^{\frac{1}{n}}$$
. Hence, $r(ef) \le r(e)r(f)$

1.5 Properties of the spectum

PROPOSITION 1.5.1:

Let
$$e \in \mathcal{B}$$
. Let $(e_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}$ be a sequence such that $e_n \xrightarrow[n \to \infty]{\mathbb{N}} e$.

If $z \in \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n} \sigma(e_k)}$ then $z \in \sigma(e)$. Hence, $\bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n} \sigma(e_k)} \subseteq \sigma(e)$.

PROOF:

Let assume that $z \in \rho(e) = \mathbb{C} \setminus \sigma(e)$. Then, there exists $\varepsilon_1 > 0$, $\mathscr{B}(z, \varepsilon_1) \subseteq \rho(e)$. Let $\varepsilon_2 = \frac{1}{3\|(e-z)^{-1}\|}$. As $e_k \xrightarrow[k \to \infty]{} e$, there exists $n \geq 0$ such that $\forall k \geq n$, $\|e_k - e\| \leq \varepsilon_2$.

Let $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$. Then, for all w in $\mathcal{B}(z, \varepsilon)$,

$$\begin{aligned} e_k - w &= \underbrace{(e_k - e)}_{\parallel \cdot \parallel \leq \varepsilon} + \underbrace{(e - z)}_{\text{invertible}} + \underbrace{(z - w)}_{\parallel \cdot \parallel < \varepsilon} \\ &= (e - z)(1 + (e - z)^{-1}((e_k - e) + (z - w))) \end{aligned}$$

But,

$$\|(e-z)^{-1}((e_k - e) + (z - w))\| \le \|(e-z)^{-1}\| \|((e_k - e) + (z - w))\|$$

$$\le \|(e-z)^{-1}\| 2\varepsilon$$

$$\le \frac{2}{3} < 1$$

So, by proposition 1.2.6, there exists $n \geq 0$, such that $\forall k \geq n$, $e_k - w$ is invertible *i.e.* $w \in \rho(e_k)$. So, there exists $n\geq 0$, such that $\forall k\geq n, \mathscr{B}(z,\varepsilon)\subseteq \rho(e_k)$, so, $\mathscr{B}(z,\varepsilon)\subseteq \bigcap \rho(e_k)$.

So, there exists
$$n \geq 0$$
 such that $z \in \bigcap_{k \geq n} \widehat{\rho(e_k)} = \mathbb{C} \setminus \bigcup_{k \geq n} \widehat{\sigma(e_k)} = \mathbb{C} \setminus \overline{\bigcup_{k \geq n} \sigma(e_k)}$. Hence, $z \in \bigcup_{n \in \mathbb{N}} \mathbb{C} \setminus \overline{\bigcup_{k \geq n} \sigma(e_k)}$, i.e. $z \notin \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n} \sigma(e_k)}$.

Let $e \in \mathcal{B}$. Let $(e_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}$ be a sequence such that $e_n \xrightarrow[n \to \infty]{\parallel \cdot \parallel} e$.

If $z \notin \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \ge n} \sigma(e_k)}$ then $z \notin \sigma(e)$. Hence, $\sigma(e) \subseteq \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \ge n} \sigma(e_k)}$.

PROOF:

Let
$$z \notin \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n} \sigma(e_k)}$$
.

Hence,
$$z \in \bigcup_{n \in \mathbb{N}} \mathbb{C} \setminus \overline{\bigcup_{k \geq n} \sigma(e_k)} = \bigcup_{n \in \mathbb{N}} \widehat{\bigcap_{k \geq n} \mathbb{C} \setminus \sigma(e_k)} = \bigcup_{n \in \mathbb{N}} \widehat{\bigcap_{k \geq n} \rho(e_k)}.$$

So, $\exists n_0 \in \mathbb{N}$ such that $z \in \bigcap_{k \geq n_0} \widehat{\rho(e_k)}$. Then, $\exists \varepsilon > 0$ such that $\mathscr{B}(z, \varepsilon) \subseteq \bigcap_{k \geq n_0} \rho(e_k)$. Hence, for all $k \geq n_0$, $e_k - z$ is invertible. Moreover, as $\mathscr{B}(z, \varepsilon) \subseteq \bigcap_{k \geq n_0} \rho(e_k)$, $\forall k \geq n_0$, $d(0, \sigma((e_k - z)^{-1})) \geq \varepsilon$.

As $e_n \xrightarrow[n \to \infty]{\|\cdot\|} e_n \exists N \ge n_0$ such that $\forall n \ge N, \|e_n - e\| \le \frac{\varepsilon}{2}$.

So, we have:

$$r((e_{N}-z)^{-1}(e_{N}-e)) \stackrel{\stackrel{1.4.8}{\downarrow}}{\leq} r((e_{N}-z)^{-1})r(e_{N}-e)$$

$$\leq \frac{1}{d(0,\sigma((e_{N}-z)^{-1}))} ||e_{N}-e||$$

$$\leq \frac{\varepsilon/2}{\varepsilon} = \frac{1}{2}$$

$$\leq 1.$$

So, by proposition 1.4.5, $1 + (e_N - z)^{-1}(e_N - e)$ is invertible.

But,
$$e - z = e - e_N + e_N - z = ((e_N - z)^{-1}(e - e_N) + 1)(e_N - z)$$
.

So, as $e_N - z$ is also invertible, e - z is invertible.

Hence, $z \notin \sigma(e)$. So the contrapositive gives : $z \in \sigma(e) \Rightarrow z \in \bigcap \overline{\bigcup \sigma(e_k)}$.

Then, we showed $\sigma(e)\subseteq\bigcap_{n\in\mathbb{N}}\overline{\bigcup_{k\geq n}\sigma(e_k)}.$

COROLLARY 1.5.3:

Let $e \in \mathcal{B}$. Let $(e_n)_{n \in \mathbb{N}} \in \mathcal{B}^{\mathbb{N}}$ be a sequence such that $e_n \xrightarrow[n \to \infty]{\parallel . \parallel} e$. Then :

$$\sigma(e) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \ge n} \sigma(e_k)}.$$

Application 2

Some reminders on Laurent series

Let $f: \mathscr{C}(0,R_1,R_2) \to \mathbb{C}$ holomorphic. Then

$$\forall r_1, r_2 \in]R_1, R_2[, \int_{\Gamma_{r_1}} f(z)dz = \int_{\Gamma_{r_2}} f(z)dz$$

PROOF:

Let $J: R \in]R_1, R_2[\mapsto \int_{\Gamma_R} f(z)dz$.

Let g the holomorphic map defined by $\forall z \in \mathscr{C}(0,R_1,R_2), g(z) := zf(z)$. Let $R \in]R_1,R_2[$. With the parametrization of Γ_R , $z=Re^{it}$ for $t \in [0,2\pi]$, we have :

$$J(R) = i \int_0^{2\pi} g(Re^{it}) dt$$

So, by differentiation under integral sign theorem, we have J differentiable and

$$\forall R \in]R_1, R_2[, J'(R) = i \int_0^{2\pi} e^{it} g'(Re^{it}) dt = \frac{1}{R} \int_{\Gamma_R} g'(z) dz$$

But, we also have, as the integral of a derivative on a closed path,

$$\forall R \in]R_1, R_2[, \int_{\Gamma_R} g'(z)dz = 0, \textit{i.e.}J'(R) = 0$$

So, J is constant.

PROPOSITION 2.1.2: LAURENT SERIES

Let $f: \mathscr{C}(0,R_1,R_2) \to \mathbb{C}$ holomorphic. Then, there exists a sequence $(a_n)_{n\in\mathbb{Z}} \subseteq \mathbb{C}$ such that $\forall z \in \mathscr{C}(0,R_1,R_2), f(z) = \sum\limits_{n=-\infty}^{+\infty} a_n z^n$. Moreover, this series normally converges on all compact include in $\mathscr{C}(0, R_1, R_2)$.

PROOF:

Let $\lambda \in \mathscr{C}(0, R_1, R_2)$.

If we consider the following map:

$$g: \left| \begin{array}{ccc} \mathscr{C}(0,R_1,R_2) & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & \left\{ \begin{array}{ccc} f'(\lambda) & \operatorname{si} z = \lambda \\ \frac{f(z) - f(\lambda)}{z - \lambda} & \operatorname{si} z \neq \lambda \end{array} \right. \end{array} \right.$$

The map g is continuous and its restriction on $\mathscr{C}(0,R_1,R_2)\setminus\{\lambda\}$ is holomorphic. So, we can apply the below lemma. We can set r_1, r_2 such that $R_1 < r_1 < |\lambda| < r_2 < R_2$ and so, we have

$$\int_{\Gamma_{r_2}} g(z)dz - \int_{\Gamma_{r_1}} g(z)dz = 0$$

But, $\operatorname{Ind}(\lambda,\Gamma_{r_1})=0$ and $\operatorname{Ind}(\lambda,\Gamma_{r_2})=1$. It means that $\frac{1}{2i\pi}\left(\int_{\Gamma_{r_2}} \frac{dz}{z-\lambda}-\int_{\Gamma_{r_1}} \frac{dz}{z-\lambda}\right)=1$. And, by those two equalites, we can deduce that:

$$f(\lambda) = \frac{1}{2i\pi} \left(\int_{\Gamma_{r_2}} \frac{f(z)}{z - \lambda} dz - \int_{\Gamma_{r_1}} \frac{f(z)}{z - \lambda} dz \right) \tag{1}$$

However, for $z\in\mathbb{C}$ such that $|z|=r_2>|\lambda|$ *i.e.* $\left|\frac{\lambda}{z}\right|<1$, we have :

$$\frac{1}{z-\lambda} = \frac{1}{z} \times \frac{1}{1-\frac{\lambda}{z}} = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{\lambda^n}{z^n} = \sum_{n=0}^{+\infty} \frac{\lambda^n}{z^{n+1}} \text{ hence, } \frac{f(z)}{z-\lambda} = \sum_{n=0}^{+\infty} \frac{f(z)}{z^{n+1}} \lambda^n$$

For the same reason, for $z\in\mathbb{C}$ such that $|z|=r_1<|\lambda|$ i.e. $\left|\frac{\lambda}{z}\right|>1$, we have :

$$\frac{1}{z - \lambda} = \frac{1}{\lambda} \times \frac{-1}{1 - \frac{z}{\lambda}} = \frac{-1}{\lambda} \sum_{n=0}^{+\infty} \frac{z^n}{\lambda^n} = -\sum_{n=0}^{+\infty} z^n \lambda^{-(n+1)} = -\sum_{n=-\infty}^{-1} \frac{\lambda^n}{z^{n+1}}$$

Hence,

$$\frac{f(z)}{z-\lambda} = -\sum_{n=-\infty}^{-1} \frac{f(z)}{z^{n+1}} \lambda^n$$

So, by (1) and the below lemma (applied to $z\mapsto \frac{f(z)}{z^{n+1}}$ holomrphic on $\mathscr{C}(0,R_1,R_2)$), we have

$$f(\lambda) = \sum_{n=-\infty}^{+\infty} a_n \lambda^n \text{ where } \forall n \in \mathbb{Z}, a_n = \frac{1}{2i\pi} \int_{\Gamma_r} \frac{f(z)}{z^{n+1}} dz \text{ independantly of the choice of } r \in]R_1, R_2[...]$$

As power series are normally convergent on all compacts included on their convergence disk, we can deduce that $\sum\limits_{n\in\mathbb{Z}}a_nz^n$ normally converges on all compact include on $\mathscr{C}(0,R_1,R_2)$.

PROPOSITION 2.1.3

Let $\mathscr{C}(0,R_1,R_2)\subseteq \mathbb{C}$ such that $\mathscr{C}\subseteq \mathscr{C}(0,R_1,R_2)$ and $f\in H(\mathscr{C}(0,R_1,R_2))$. Then f has an absolutely convergent Fourier series.

PROOF:

The map f is holomorphic on the annulus, so by the below proposition, f can be expanded in Laurent series. So there exists $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ such that

$$\forall z \in \mathscr{C}(0, R_1, R_2), f(z) = \sum_{n \in \mathbb{Z}} a_n z^n$$

As $\mathscr C$ is a compact include in $\mathscr C(0,R_1,R_2)$, the series $\sum\limits_{n\in\mathbb Z}a_n$ is normally convergent.

So, the family $(a_n)_{n\in\mathbb{Z}}$ is summable. But, we have :

$$\forall n \in \mathbb{Z}, a_n = \frac{1}{2i\pi} \oint_{\mathscr{C}} \frac{f(z)}{z^{n+1}} dz = \int_{z=e^{i\theta}}^{\pi} \frac{f(e^{i\theta})}{e^{i(n+1)\theta}} i e^{i\theta} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} d\theta = c_n(f)$$

As $\sum\limits_{n\in\mathbb{Z}}a_n$ is absolutely convergent, then $\sum\limits_{n\in\mathbb{Z}}c_n(f)$ is absolutely convergent. And so, f has an absolutely convergent Fourier series.

Results on $\ell^1(\mathbb{Z})$ -space

DEFINITION 2.2.1: $(\ell^1(\mathbb{Z})$ -SPACE)

The $\ell^1(\mathbb{Z})$ **space** is defined by :

$$\ell^1(\mathbb{Z}) := \left\{ T = (t_k)_{k \in \mathbb{Z}} \in \mathbb{C}^\mathbb{Z}, \text{such that } \|T\|_1 = \sum_{k = -\infty}^{+\infty} |t_k| < +\infty \right\}$$

PROPOSITION 2.2.2:

The space $\ell^1(\mathbb{Z})$ is a Banach algebra in which the product of two elements is defined by convo-

$$\forall S=(s_k)_{k\in\mathbb{Z}}, T=(t_k)_{k\in\mathbb{Z}}\in\ell^1(\mathbb{Z}), \ TS:=(p_k)_{k\in\mathbb{Z}} \ \textit{where} \ \forall k\in\mathbb{Z}, p_k=\sum_{j=-\infty}^{+\infty}t_js_{k-j}$$

Remark We can also write, for all
$$k$$
 in \mathbb{Z} , $p_k = \sum\limits_{j=-\infty}^{+\infty} t_j s_{k-j} = \sum\limits_{j+l=k} t_j s_l$

PROOF:

— Let us show that $(\ell^1(\mathbb{Z}), \|.\|)$ is complete. Let $(T_n)_{n\in\mathbb{Z}}$ a Cauchy sequence of $\ell^1(\mathbb{Z})$. Then:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p,q \geq N, \|T_p - T_q\|_1 \leq \varepsilon \quad (*)$$
 i.e.
$$\sum_{k=-\infty}^{+\infty} |T_{p,k} - T_{q,k}| \leq \varepsilon$$

In particular, $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geq N, \forall k \in \mathbb{Z}, |T_{p,k} - T_{q,k}| \leq \varepsilon$. So, for all k in \mathbb{Z} , $(T_{n,k})_{n \in \mathbb{N}}$ is a Cauchy sequence in $(\mathbb{C}, |.|)$ which is complete. Then, $(T_{n,k})_{n\in\mathbb{N}}$ converges, we denote $T_k\in\mathbb{C}$ its limit. Let $T:=(T_k)_{k\in\mathbb{Z}}$. But, (*) with $\varepsilon = 1 > 0$ gives :

$$\exists N \in \mathbb{N}, \forall p, q \geq N, ||T_p - T_q||_1 \leq 1$$

Let
$$K \in \mathbb{N}$$
. Then, $\forall p \geq N, \sum\limits_{k=-K}^{K} |T_{p,k} - T_{N,k}| \leq 1$.

So, when p goes to $+\infty$, we have : $\sum\limits_{k=-K}^{K}\underbrace{|T_k-T_{N,k}|}_{|T_k|-|T_{N,k}|\leq}\leq 1.$

So,
$$\sum\limits_{k=-K}^{K}|T_k|\leq\sum\limits_{k=-K}^{K}|T_{N,k}|+1\leq\sum\limits_{k=-\infty}^{+\infty}|T_{N,k}|+1=\|T_N\|_1.$$

 $|T_k|$ converges i.e. $T \in \ell^1(\mathbb{Z})$

Then, when q goes to $+\infty$ in (*), we have :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p \geq N, ||T_p - T||_1 \leq \varepsilon$$

This means $T_n \xrightarrow[n \to \infty]{\| \cdot \|_1} T$. Hence, $(\ell^1(\mathbb{Z}), \| . \|_1)$ is a Banach space.

Let us show that the convolution is well defined.

As $T\in\ell^1(\mathbb{Z}), t_k\underset{|k|\to+\infty}{\longrightarrow}0$, and then $(t_k)_{k\in\mathbb{N}}$ is bounded by a constant $M\in\mathbb{R}$.

So, for all $j \in \mathbb{Z}$, for all $k \in \mathbb{Z}$, $|t_j s_{k-j}| \leq M |s_{k-j}|$ and then, as $S \in \ell^1(\mathbb{Z})$, we have $(t_j s_{k-j})_{j \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ i.e. $(t_j s_{k-j})_{j \in \mathbb{Z}}$ is summable.

But, we have

$$\forall j \in \mathbb{Z}, \sum_{k \in \mathbb{Z}} |t_j s_{k-j}| = |t_j| \sum_{k \in \mathbb{Z}} |s_{k-j}| = |t_j| \sum_{k \in \mathbb{Z}} |s_k|$$

So, for all $j\in\mathbb{Z}, \sum\limits_{k\in\mathbb{Z}}|t_js_{k-j}|$ converges and its sum is $\sum\limits_{k=-\infty}^{+\infty}|t_js_{k-j}|=|t_j|\,\|s\|_1$.

Moreover, $\sum\limits_{j\in\mathbb{Z}}\sum\limits_{k=-\infty}^{+\infty}|t_js_{k-j}|=\|s\|_1\sum\limits_{j\in\mathbb{Z}}|t_j|.$ So, $\sum\limits_{j\in\mathbb{Z}}\sum\limits_{k=-\infty}^{+\infty}|t_js_{k-j}|$ converges and its sum is $\sum\limits_{j=-\infty}^{+\infty}\sum\limits_{k=-\infty}^{+\infty}|t_js_{k-j}|=\|s\|_1\|t\|_1.$

Hence, by Fubini's theorem, $(t_j s_{k-j})_{k,j \in \mathbb{Z}}$ is summable and :

$$\sum_{(j,k)\in\mathbb{Z}^2} |t_j s_{k-j}| = \sum_{k\in\mathbb{Z}} \left(\sum_{j\in\mathbb{Z}} |t_j| \, |s_{k-j}| \right) = \|t\|_1 \, \|s\|_1 < +\infty$$

Then, as
$$\forall k \in \mathbb{Z}, \left|\sum_{j=-\infty}^{+\infty} t_j s_{k-j}\right| \leq \sum_{j=-\infty}^{+\infty} \left|t_j\right| \left|s_{k-j}\right|, (p_k)_{k \in \mathbb{Z}} \in \ell^1(\mathbb{Z}).$$

So, the convolution of T and S is well defined in $\ell^1(\mathbb{Z})$ and we have :

$$||TS||_1 = \sum_{k=-\infty}^{+\infty} \left| \sum_{j=-\infty}^{+\infty} t_j s_{k-j} \right| \le \sum_{k=-\infty}^{+\infty} \left(\sum_{j=-\infty}^{+\infty} |t_j| |s_{k-j}| \right) = ||T||_1 ||S||_1$$

Let us show that the convolution is associative.

Let $R=(r_k)_{k\in\mathbb{Z}}, S=(s_k)_{k\in\mathbb{Z}}, T=(t_k)_{k\in\mathbb{Z}}\in\ell^1(\mathbb{Z})$. Then, for all k in \mathbb{Z} :

$$(R(ST))_k = \sum_{j+l=k} r_j (ST)_l$$

$$= \sum_{j+l=k} t_j \sum_{i+h=l} s_i t_h$$

$$= \sum_{j+i+h=k} r_j s_i t_h$$

$$= \sum_{l+h=k} \left(\sum_{j+i=l} r_j s_i \right) t_h$$

$$= \sum_{l+h=k} (RS)_l t_h$$

$$= (RS)_l t_h$$

Hence, R(ST) = (RS)T. So, the convolution is associative.

PROPOSITION 2.2.3:

The space $\ell^1(\mathbb{Z})$ is commutative.

PROOF:

Let $T, S \in \ell^1(\mathbb{Z})$, $TS = (p_k)_{k \in \mathbb{Z}}$ and $ST = (q_k)_{k \in \mathbb{Z}}$. Let $k \in \mathbb{Z}$.

$$p_k = \sum_{j \in \mathbb{Z}} t_j s_{k-j} \stackrel{\stackrel{u=k-j}{\downarrow}}{=} \sum_{u \in \mathbb{Z}} t_{k-u} s_u = \sum_{u \in \mathbb{Z}} s_u t_{k-u} = q_k$$

So, for all $k \in \mathbb{N}$, $p_k = q_k$, i.e. TS = ST

NOTATION We will write $\mathcal B$ for $\ell^1(\mathbb Z)$ in the remainder of the document

2.3 Wiener's theorem

Indeed, the following map defines an isomorphism between $\mathbb{R}/_{2\pi\mathbb{Z}}$ and \mathbb{T} :

$$\psi: \left| \begin{array}{ccc} \mathbb{R}/_{2\pi\mathbb{Z}} & \longrightarrow & \mathbb{T} \\ \theta & \longmapsto & e^{i\theta} \end{array} \right|$$

DEFINITION 2.3.1 : (EXPONENTIAL FAMILY)

For all $k \in \mathbb{Z}$, Let us define : $e_k : \theta \in \mathbb{R} \mapsto e^{ik\theta} \in \mathbb{T}$.

We will call $(e_k)_{k\in\mathbb{Z}}$ the **exponential family.**

DEFINITION 2.3.2 : (FOURIER COEFFICIENTS)

For all $f \in L^1(\mathbb{T})$, we call Fourier coefficients of f the following sequence $(\hat{f}(k))_{k \in \mathbb{Z}}$ defined by:

$$\forall k \in \mathbb{Z}, \hat{f}(k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-ik\theta} d\theta$$

DEFINITION 2.3.3 : (FOURIER SERIES)

For all $f \in L^1(\mathbb{T})$, we can associate the following series called **Fourier series of** f:

$$\sum_{k \in \mathbb{Z}} \hat{f}(k) e_k$$

Notation For $T=(au_k)_{k\in\mathbb{Z}}\in\mathcal{B}$, we denote $\Delta_T:=\sum_{k=-\infty}^{\infty} au_ke_k$.

PROPOSITION 2.3.4:

Let $T=(au_k)_{k\in\mathbb{Z}}\in\mathcal{B}.$ For all $heta\in\mathbb{R}$, $\Delta_T(heta)$ is an absolutely convergent series.

PROOF:

Let $\theta \in \mathbb{R}$. As $T \in \mathcal{B}$,

$$\sum_{k=-\infty}^{\infty} |\tau_k e_k(\theta)| = \sum_{k=-\infty}^{\infty} |\tau_k| \underbrace{|e_k(\theta)|}_{-1} < +\infty$$

PROPOSITION 2.3.5:

Let $T=(au_k)_{k\in\mathbb{Z}}, S=(s_k)_{k\in\mathbb{Z}}\in\mathcal{B}.$ Then, for all $heta\in\mathbb{R}$, $\Delta_{TS}(heta)=\Delta_T(heta)\Delta_S(heta).$

PROOF:

Let $\theta \in \mathbb{R}$.

As $T, S \in \mathcal{B}$, $TS := (p_k)_{k \in \mathbb{Z}} \in \mathcal{B}$, the two series $\Delta_T(\theta)$ and $\Delta_S(\theta)$ are absolutely convergent. So the Cauchy product of the two series converges. So, we have :

$$\Delta_{T}(\theta)\Delta_{S}(\theta) = \left(\sum_{k=-\infty}^{\infty} \tau_{k}e_{k}(\theta)\right) \left(\sum_{k=-\infty}^{\infty} s_{k}e_{k}(\theta)\right)$$

$$= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \tau_{j}e_{j}(\theta)s_{k-j}e_{k-j}(\theta)$$

$$= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \tau_{j}s_{k-j}e_{k}(\theta)$$

$$= \sum_{k=-\infty}^{\infty} p_{k}e_{k}(\theta)$$

$$= \Delta_{TS}(\theta)$$

PROPOSITION 2.3.6:

Let $T=(au_k)_{k\in\mathbb{Z}}\in\mathcal{B}$. Then, $\sigma(T)=\Delta_T(\mathbb{R})$.

PROOF:

i) Let us suppose that Δ_T has an analytic continuation on a neighbourhood of $\mathscr C$ that we denote V. Let us denote f this continuation. Let $\zeta \not\in \Delta_T(\mathbb R)$.

Then, as f is continuous, there exists $V' \subseteq V$ such that :

$$\mathscr{C} \subseteq V'$$
 and $\forall z \in V', f(z) - \zeta \neq 0$ i.e. $(f - \zeta)(z) \neq 0$

Hence, $g:z\in V'\mapsto (f(z)-\zeta)^{-1}$ is well defined and holomorphic. So, by proposition 2.1.3, g has an absolutely convergent Fourier series.

Let us denote $R:=(\hat{g}(n))_{n\in\mathbb{Z}}$. Then, we have $R\in\mathcal{B}$ and $R(T-\zeta)=(T-\zeta)R=1$. Hence, $T-\zeta$ is invertible. Then, $\zeta\not\in\sigma(T)$.

So we showed $\sigma(T) \subseteq \Delta_T(\mathbb{R})$.

Converserly, if $\zeta \in \Delta_T(\mathbb{R})$ there exists $z \in \mathbb{R}$ such that $\zeta = \Delta_T(z)$ i.e. $\Delta_T(z) - \zeta = 0$ then $T - \zeta$ is not invertible. So, $\Delta_T(\mathbb{R}) \subseteq \sigma(T)$.

ii) Now, we consider the general case.

For all $n \in \mathbb{N}$, let $T_n := (\tau_{n,k})_{k \in \mathbb{Z}}$ where

$$au_{n,k} = au_k ext{ if } k \in \llbracket -n, n
rbracket$$
 $0 ext{ else}$

Then, as trignometric polynomials, the T_n have an analytic continuation on a neighbourhood of \mathscr{C} . So, we can apply the first point to them. Moreover:

$$||T - T_n|| = \left\| \sum_{k \le -n-1} \tau_k + \sum_{k \ge n+1} \tau_k \right\|$$

$$\leq \left\| \sum_{k \le -(n+1)} \tau_k \right\| + \left\| \sum_{k \ge n+1} \tau_k \right\|$$

$$\leq \sum_{k \le -(n+1)} |\tau_k| + \sum_{k \ge n+1} |\tau_k|$$
rest of a convergent series

Hence, $||T - T_n|| \underset{n \to \infty}{\longrightarrow} 0$.

Moreover, with a similar proof, we can show that:

$$\forall \theta \in \mathbb{R}, |\Delta_T(\theta) - \Delta_{T_n}(\theta)| \leq \sum_{k \leq -(n+1)} |\tau_k| + \sum_{k \geq n+1} |\tau_k| \underset{n \to +\infty}{\longrightarrow} 0 \ \ \text{independantly of } \theta \in \mathbb{R}, |\Delta_T(\theta) - \Delta_{T_n}(\theta)| \leq \sum_{k \leq -(n+1)} |\tau_k| + \sum_{k \geq n+1} |\tau_k| \underset{n \to +\infty}{\longrightarrow} 0$$

So, $(\Delta_{T_n})_{n\in\mathbb{N}}$ uniformly converges on \mathbb{R} towards Δ_T . Then, by corollary 1.5.3,

$$\sigma(T) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n}} \sigma(T_k) \stackrel{\text{first point}}{=} \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n}} \Delta_{T_k}(\mathbb{R})$$

Let us show that $\bigcap_{n\in\mathbb{N}}\overline{\bigcup_{k\geq n}\Delta_{T_k}(\mathbb{R})}=\Delta_T(\mathbb{R})$:

$$- \text{ Let } y \in \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n}^{n \in \mathbb{N}} \Delta_{T_k}(\mathbb{R})}.$$
 Then, $\forall n \in \mathbb{N}, y \in \overline{\bigcup_{k \geq n} \Delta_{T_k}(\mathbb{R})}.$

So, let $n \in \mathbb{N}^*$, $\exists k_n \geq n$, $\exists x_n \in \mathbb{R}$ such that $|y - \Delta_{T_k}(x_n)| \leq \frac{1}{n}$. As the maps Δ_{T_k} are 2π -periodic, we can suppose that $(x_n)_{n \in \mathbb{N}^*} \subseteq [0, 2\pi]$. So, $(x_n)_{n\in\mathbb{N}^*}$ is a sequence in a compact set so it admits a convergent subsequence : there exist $\phi: \mathbb{N}^* \mapsto \mathbb{N}^*$ an increasing map and x in $[0, 2\pi]$ such that $x_{\phi(n)} \underset{n \to \infty}{\longrightarrow} x$.

Hence, as $(\Delta_{T_k})_{k\in\mathbb{N}}$ converges uniformely towards Δ_T on $[0,2\pi]$, we have:

$$y = \lim_{n \to \infty} \Delta_{T_{k_{\phi(n)}}}(x_{\phi(n)}) = \Delta_T(x) \in \Delta_T(\mathbb{R})$$

— Let $y \in \Delta_T(\mathbb{R})$. Then, there exists $x \in \mathbb{R}$ such that

$$y = \Delta_T(x) = \sum_{k=-\infty}^{+\infty} \tau_k e^{ikx}$$
$$= \lim_{N \to +\infty} \sum_{k=-N}^{N} \tau_k e^{ikx}$$
$$= \lim_{N \to +\infty} \Delta_{T_N}(x)$$
$$\in \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} \Delta_{T_k}(\mathbb{R})$$

So,
$$\Delta_T(\mathbb{R}) \subseteq \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \geq n} \Delta_{T_k}(\mathbb{R})}$$
.

Then we showed that

$$\sigma(T) = \bigcap_{n \in \mathbb{N}} \overline{\bigcup_{k \ge n} \Delta_{T_k}(\mathbb{R})} = \Delta_T(\mathbb{R})$$

THEOREM 2.3.7: WIENER'S THEOREM

Let $f: \mathbb{R} \mapsto \mathbb{C}$ be a 2π -periodic continuous map.

If f has an absolutely convergent Fourier series and does not vanish anywhere, then f^{-1} has an absolutely convergent Fourier series.

PROOF:

As f has an absolutely convergent Fourier series, $T:=(\hat{f}(n))_{n\in\mathbb{Z}}\in\mathcal{B}$ and we have $f=\Delta_T$ almost everywhere because f is continuous. Hence, thanks to proposition 2.3.6, we have :

$$\sigma(T) = \Delta_T(\mathbb{R}) = f(\mathbb{R})$$

So, since f does not vanish anywhere, $0 \notin f(\mathbb{R}) = \sigma(T)$. Then, T - 0 = T is invertible. Let us denote S its inverse. Then, by proposition 2.3.5,

$$f\Delta_S = \Delta_T \Delta_S = \Delta_{TT^{-1}} = \Delta_{1_B} = e_0 = 1$$

As the usual product on maps is commutative, f is invertible and $f^{-1} = \Delta_S$. Hence, f^{-1} has an absolutely convergent Fourier series.