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1 General statements on Banach algebras

1.1 Some reminders on Banach spaces
For this section, (E, ‖.‖) is a normed vector space.

DEFiNiTiON 1.1.1 : (CONVERGENT SEQUENCE)
Let (en)n∈N be a sequence inE and e inE.
We say that (en)n∈N converges toward e inE when : ‖en − e‖ −→

n→∞
0.

DEFiNiTiON 1.1.2 : (CAUCHY SEQUENCE AND BANACH SPACE)
Let (en)n∈N be a sequence inE.

▶ We say that (en)n∈N is a Cauchy sequencewhen :

∀ε > 0, ∃n ∈ N, ∀p, q ≥ n, ‖ep − eq‖ ≤ ε.

▶ We say that (E, ‖.‖) is a Banach spacewhen any Cauchy sequence ofE is convergent in
E.

DEFiNiTiON 1.1.3 : (CONVERGENT SERiES AND NORMALLY CONVERGENT SERiES)
Let (en)n∈N be a sequence inE.

▶ We say that
∑
n∈N

en is convergent inE when
(

N∑
n=0

en

)
N∈N

converges inE.

▶ We say that
∑
n∈N

en is normally convergentwhen
∑
n∈N

‖en‖ converges (inR).

THEOREM 1.1.4 : CHARACTERiSATiON OF BANACH SPACES
Normed vector space (E, ‖.‖) is a Banach space if and only if any normally convergent series is
convergent.

PROOF :
— Let us assume that (E, ‖.‖) is a Banach space.

Let (en)n∈N be a sequence inE such that
∑
n∈N

en is normally convergent.

Let k > l. Then : ∥∥∥∥∥
k∑

n=0

en −
l∑

n=0

en

∥∥∥∥∥ =

∥∥∥∥∥
k∑

n=l+1

en

∥∥∥∥∥
≤

k∑
n=l+1

‖en‖

≤
+∞∑

n=l+1

‖en‖

But,
∑
n∈N

en is normally convergent so
∑
n∈N

‖en‖ converges.Hence,
+∞∑

n=l+1

‖en‖ is a remainder

of a convergent series. So,
+∞∑

n=l+1

‖en‖ −→
l→∞

0.

So,
(∑

n∈N
en

)
n∈N

is a Cauchy sequence is Banach spaceE.
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Hence,
(∑

n∈N
en

)
n∈N

converges inE which means
∑
n∈N

en converges.

— Let us assume that any normally convergent series is convergent.
Let (en)n∈N be a Cauchy sequence inE. Then,

∀ε > 0, ∃n ∈ N, ∀p, q ≥ n, ‖ep − eq‖ ≤ ε

For ε =
(
1
2

)0
= 1 > 0, ∃n0 ∈ N, ∀p, q ≥ n0, ‖ep − eq‖ ≤

(
1
2

)0.
So, in particular, ‖en0+1 − en0‖ ≤

(
1
2

)0.
For ε =

(
1
2

)1, ∃n1 > n0, ∀p, q ≥ n1, ‖ep − eq‖ ≤
(
1
2

)1.
So, in particular, ‖en1+1 − en1‖ ≤

(
1
2

)1.
Hence, by induction, we built an increasing sequence (nk)k∈N such that :

∀k ∈ N, ‖enk+1 − enk
‖ ≤

(
1

2

)k

But,
(
1
2

)k is the term of a convergent series. So,
∑
k∈N

‖enk+1 − enk
‖ is convergent i.e.∑

k∈N
(enk+1−enk

) is normally convergent. Hence, by hypothesis,
∑
k∈N

(enk+1−enk
) converges

inE.
But, for allK ∈ N,

K∑
k=0

(enk+1 − enk
) = enK+1 − en0 .

So, enK+1 = en0︸︷︷︸
constant

+
K∑
k=0

(enk+1 − enk
).︸ ︷︷ ︸

term of a convergent sequence

Hence, (enK+1)K∈N is convergent inE.

So, (en)n∈N is a Cauchy sequence which admits a convergent subsequence. So, (en)n∈N
converges inE.
Hence, we showed that any Cauchy sequence ofE converges inE. So,(E, ‖.‖) is a Banach
space.

■

1.2 First definitions and properties
DEFiNiTiON 1.2.1 : (ALGEBRA)
LetK be a field.
An algebra B is aK‑vectorial space (B,+, .) endow with an internal associative bilinear mul‑
tiplication law×, i.e., for all e, f, g ∈ B :

i) e× f ∈ B
ii) (e× f)× g = e× (f × g) = e× f × g

iii) e× (f + g) = e× f + e× g and (e+ f)× g = e× g + f × e

iv) ∀λ, µ ∈ K, (λ.e)× (µ.f) = (λµ).(µ× f)

DEFiNiTiON 1.2.2 : (NORMED ALGEBRA)
We say that an algebra B is normed if we can endow B with a norm ‖.‖ such that :

∀e, f ∈ B, ‖ef‖ ≤ ‖e‖ ‖f‖
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REMARK In such an algebra, we can prove by induction that : ∀x ∈ B, ∀n ∈ N, ‖en‖ ≤ ‖e‖n.

DEFiNiTiON 1.2.3 : (BANACH ALGEBRA)
A Banach algebra B is a normed algebra (B, ‖.‖) over K and a Banach space endowed with
the metric induced by the norm ‖.‖.

DEFiNiTiON 1.2.4 : (UNiT ELEMENT)
Aunit element 1 ofB is an element such that for all e ∈ B, e1 = 1e = e and verifying ‖1‖ = 1.

REMARK An algebra doesn’t necessary have a unit but if it exists, then it is unique.

NOTATiON We will write in the remainder of the document, for all λ ∈ K, λ for λ1.

DEFiNiTiON 1.2.5 : (INVERTiBLE)
An element e ∈ B is said invertible if there exists f ∈ B such that ef = fe = 1.
f is unique and will be denoted e−1.

REMARK The set of invertible elements ofB endowedwith× is amultiplicative groupdenoted
G(B).

PROPOSiTiON 1.2.6 :
Let e ∈ B. If ‖e‖ < 1 then

1− e is invertible and (1− e)−1 =
∞∑
i=0

ei

PROOF :
ForN ∈ N, let SN =

N∑
n=0

en. As B is a Banach algebra, we have for all n in N, ‖en‖ ≤ ‖e‖n.But,

we supposed that ‖e‖ < 1. So,
∑
n∈N

‖e‖n is convergent. So is
∑
n∈N

‖en‖. Then,
∑
n∈N

en is normally

convergent. Hence, as B is a Banach space, by proposition 1.1.4,
∑
n∈N

en converges in B.

Let S =
∞∑
n=0

en be its limit.

But, as sums of powers of e, we have : ∀N ∈ N, SN(1− e) = (1− e)SN = 1− eN+1.
So, S(1− e) = (1− e)S = lim

N→+∞
(1− eN+1) = 1.

Hence, 1− e is invertible and (1− e)−1 = S =
∞∑
n=0

en ■

REMARK We also have if ‖e‖ < 1, that 1 + e invertible and (1 + e)−1 =
∞∑
i=0

(−1)iei

DEFiNiTiON 1.2.7 : (RESOLVENT SET)
The resolvent set of e ∈ B denoted ρ(e) is defined by :

ρ(e) = {ζ ∈ C, e− ζ is invertible}

DEFiNiTiON 1.2.8 : (RESOLVENT MAP)
The resolvent of e ∈ B is defined by the following map :

Re : ρ(e) −→ G(B)
ζ 7−→ (e− ζ)−1
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DEFiNiTiON 1.2.9 : (SPECTRUM)
The spectrum of e ∈ B is the complementary set in the complex plane of the resolvent set of
e. It will be denoted :

σ(e) := C\ρ(e)

1.3 Properties of the resolvent
PROPOSiTiON 1.3.1 :
Let e ∈ B. Then, the set ρ(e) is open inC.
Moreover, the resolventRe : z ∈ ρ(e) 7→ (e− z)−1 ∈ G(B) is analytic.

PROOF :
Let a ∈ ρ(e), we have for all z ∈ C :

e− z = e− a+ a− z

= (e− a)(1− (e− a)−1(z − a))

If |z − a| < 1
∥(e−a)−1∥ , then by proposition 1.2.6, 1− (e− a)−1(z− a) is invertible and so is e− z.

So,B(a, 1
∥(e−a)−1∥) ⊆ ρ(e). Then, the resolvent set ρ(e) is open. Moreover, the proposition also

states that

∀z ∈ B(a,
1

‖(e− a)−1‖
), (e− z)−1 = (e− a)−1

(∑
n≥0

((z − a)(e− a)−1)n

)

This shows the resolvent map is analytic. ■
PROPOSiTiON 1.3.2 :
Let e ∈ B.
The resolvent mapRe : z ∈ ρ(e) 7→ (e− z)−1 ∈ G(B) is holomorphic on ρ(e).

PROOF :
Let z0 ∈ ρ(e). We have :

(z − z0)
−1[Re(z)−Re(z0)] = (z − z0)

−1[(e− z)−1 − (e− z0)
−1]

= (z − z0)
−1(e− z)−1(e− z0)

−1[e− z0 − e+ z]

= (z − z0)
−1(e− z)−1(e− z0)

−1(z − z0)

= (e− z)−1(e− z0)
−1

∥.∥−→
z→z0

(e− z0)
−2 by continuity (from analyticity 1.3.1) of the resolvent of e

■

1.4 Properties of a particular radius
Here is a little reminder :

PROPOSiTiON 1.4.1 : ROOT TEST
Let (en)n∈N ⊆ B. LetC := lim

n→+∞
n
√
‖en‖

i) IfC < 1, the series normally converges (so converges if the space is a Banach).
ii) IfC > 1, the series diverges.
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PROOF :

i) Let us assume that C < 1. Let q ∈ R such that C < q < 1. As C < q, there exists
N ∈ N such that ∀n ≥ N, ‖en‖1/n ≤ q. Then (‖en‖)n≥N is upper bounded by a geome‑
tric sequence (qn)n≥N . But, as q < 1,

∑
n∈N

qn converges, so, by comparison,
∑
n∈N

‖en‖ also
converges.

ii) Letusassume thatC > 1. Then, thereexists an infinitenumberofn such that‖en‖1/n ≥ 1,
i.e. ‖en‖ ≥ 1. So (‖en‖)n∈N does not converge to 0, so neither does (en)n∈N and then the
series diverges.

■
PROPOSiTiON 1.4.2 :
Let e ∈ B. The sequence (‖en‖

1
n )n∈N∗ converges. We will call r(e) this limit.

PROOF :
For all n ∈ N∗, let un = ‖en‖

1
n .

∗ As a norm, we have for all n ∈ N∗, un ≥ 0

∗ Let us show that (un)n∈N∗ is a non increasing sequence :

un+1

un
=

‖en+1‖
1

n+1

‖en‖
1
n

=
‖ene‖

1
n+1

‖en‖
1
n

≤ ‖en‖
1

n+1 ‖e‖
1

n+1

‖en‖
1
n

≤ ‖en‖
−1

n(n+1) ‖e‖
1

n+1

≤ ‖e‖
−1
n+1 ‖e‖

1
n+1

≤ 1

So, (un)n∈N∗ is a non increasing sequence and lower bounded by 0 so it converges.

■

REMARK As (‖en‖
1
n )n∈N∗ is a non increasing sequence, we have :

r(e) = lim
n→+∞

‖en‖1/n = inf
n∈N∗

‖en‖1/n

And so, r(e) ≤ ‖e‖

LEMMA 1.4.3 :
Let e ∈ B and z ∈ C. Then, r(ze) = |z| r(e).

PROOF :
For all n ∈ N, ‖(ze)n‖ = ‖znen‖ = |z|n ‖en‖ so ‖(ze)n‖

1
n = |z| ‖en‖

1
n .

Hence,
lim
n→∞

‖(ze)n‖
1
n = lim

n→∞
|z| ‖en‖

1
n i.e. r(ze) = |z| r(e)

■
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PROPOSiTiON 1.4.4 :

i) If r(e) < 1, the series
∑
n∈N

en is normally convergent.

ii) If r(e) > 1, the series
∑
n∈N

en is divergent.

PROOF :
As r(e) = lim

n→+∞
‖en‖

1
n , then lim

n∈N
‖en‖

1
n = r(e). So, if :

i) r(e) < 1, by the root test,
∑
n∈N

‖en‖ converges, so the series
∑
n∈N

en is normally convergent

ii) r(e) > 1, by the root test, the series
∑
n∈N

en is divergent.

■
LEMMA 1.4.5 :
Let e ∈ B. If r(e) < 1, then 1− e is invertible. Moreover,

(1− e)−1 =
+∞∑
n=0

en

PROOF :
As r(e) < 1, there exists t ∈ R such that r(e) < t < 1.
Hence, as

(
‖en‖

1
n

)
n∈N

converges towards r(e), ∃N ∈ N∗, ∀n ≥ N, ‖en‖
1
n ≤ t i.e. ‖en‖ ≤ tn.

But,
∑
n∈N

tn converges because t < 1. So, by comparison,
∑
n∈N

‖en‖ converges.

Hence,
∑
n∈N

en converges normally. Moreover, as B is a Banach space,
∑
n∈N

en converges.

Now, let us show that S :=
∞∑
n=0

en is the inverse of e.

For allN ∈ N, let SN :=
N∑

n=0

en. Then, we have :

(1− e)S = lim
N→+∞

(1− e)SN = lim
N→+∞

(1− eN+1) = 1

Hence, (1− e)S = S(1− e) = 1. So :

1− e is invertible and (1− e)−1 =
+∞∑
n=0

en

■
PROPOSiTiON 1.4.6 :
If e ∈ G(B) then (e− z)−1 is a limit of a normally convergent series onB(0, 1

r(e−1)
).

PROOF :
We have e− z = e(1− ze−1). Moreover, by lemma 1.4.3, r(ze−1) = |z| r(e−1).
If |z| < 1

r(e−1)
, then r(ze−1) < 1.

So, by proposition 1.4.5, 1 − ze−1 is invertible and so (1 − ze−1)−1 =
∞∑
n=0

(ze−1)n. Moreover,

proposition 1.4.4, this series is normally convergent onB(0, 1
r(e−1)

). ■
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PROPOSiTiON 1.4.7 :
Let e ∈ G(B). Then, d(0, σ(e)) = 1

r(e−1)
.

PROOF :
By proposition 1.3.1, we know thatR is analytic on ρ(e). As e ∈ G(B), e = e−0 is invertible. So,
0 ∈ ρ(e). Let r be the radius of convergence of the power series ofR at the point 0.
But, by Cauchy’s theorem, we know thatR is analytic on the largest disc B(0, r) included in its
holomorphic domain. But, by proposition 1.3.2, we know thatR is holomorphic on its domain
of definition ρ(e). So r = d(0, σ(e)).
Moreover, for all z inC, e− z = e(1− ze−1).
So, for all z inC, e− z is invertible if and only if 1− ze−1 is invertible.
Hence, for allΩ ⊆ C non empty open set, we have :

z 7→ (e− z)−1 is analytic onΩ if and only if z 7→ (1− ze−1)−1 is analytic onΩ

But, in the proof of 1.4.6, we showed that (e− z)−1 =
+∞∑
n=0

(e−1)n+1zn if z ∈ B(0, 1
r(e−1)

). But, by

the root test, we also know that if |z| > 1
r(e−1)

, then the series
∑
n∈N

(e−1)n+1zn is divergent.Then,

the radius of the power series of (1 − ze−1)−1 at the point 0 is 1
r(e−1)

. But, by the equivalence
written above, this radius is also equal to r.
Hence, r = 1

r(e−1)
i.e. d(0, σ(e)) = 1

r(e−1)
.

■
For now, we consider B as a commutative Banach algebra.

PROPOSiTiON 1.4.8 :
Let e, f ∈ B. Then :

r(ef) ≤ r(e)r(f)

PROOF :
Let n ∈ N. Then, because B is a commutative Banach algebra :

‖(ef)n‖ = ‖enfn‖ ≤ ‖en‖ ‖fn‖

So, ‖(ef)n‖
1
n ≤ ‖en‖

1
n ‖fn‖

1
n . Hence, r(ef) ≤ r(e)r(f) ■

1.5 Properties of the spectum
PROPOSiTiON 1.5.1 :
Let e ∈ B. Let (en)n∈N ∈ BN be a sequence such that

∥.∥
en −→ e

n→∞
.

If z ∈
⋂
n∈N

⋃
k≥n

σ(ek) then z ∈ σ(e). Hence,
⋂
n∈N

⋃
k≥n

σ(ek) ⊆ σ(e).

PROOF :
Let assume that z ∈ ρ(e) = C\σ(e). Then, there exists ε1 > 0,B(z, ε1) ⊆ ρ(e).
Let ε2 = 1

3∥(e−z)−1∥ . As
∥.∥

ek −→ e
k→∞

, there exists n ≥ 0 such that ∀k ≥ n, ‖ek − e‖ ≤ ε2.
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Let ε = min (ε1, ε2). Then, for allw inB(z, ε),

ek − w = (ek − e)︸ ︷︷ ︸
∥.∥≤ε

+(e− z)︸ ︷︷ ︸
invertible

+(z − w)︸ ︷︷ ︸
∥.∥<ε

= (e− z)(1 + (e− z)−1((ek − e) + (z − w)))

But, ∥∥(e− z)−1((ek − e) + (z − w))
∥∥ ≤

∥∥(e− z)−1
∥∥ ‖((ek − e) + (z − w))‖

≤
∥∥(e− z)−1

∥∥ 2ε
≤ 2

3
< 1

So, by proposition 1.2.6, there exists n ≥ 0, such that ∀k ≥ n, ek −w is invertible i.e.w ∈ ρ(ek).
So, there exists n ≥ 0, such that ∀k ≥ n,B(z, ε) ⊆ ρ(ek), so,B(z, ε) ⊆

⋂
k≥n

ρ(ek).

So, there exists n ≥ 0 such that z ∈
˚̧ �⋂

k≥n

ρ(ek) =
˚̌ �C \
⋃
k≥n

σ(ek) = C \
⋃
k≥n

σ(ek).

Hence, z ∈
⋃
n∈N

C \
⋃
k≥n

σ(ek) , i.e. z 6∈
⋂
n∈N

⋃
k≥n

σ(ek). ■

PROPOSiTiON 1.5.2 :
Let e ∈ B. Let (en)n∈N ∈ BN be a sequence such that

∥.∥
en −→ e

n→∞
.

If z 6∈
⋂
n∈N

⋃
k≥n

σ(ek) then z 6∈ σ(e). Hence, σ(e) ⊆
⋂
n∈N

⋃
k≥n

σ(ek).

PROOF :
Let z 6∈

⋂
n∈N

⋃
k≥n

σ(ek).

Hence, z ∈
⋃
n∈N

C \
⋃
k≥n

σ(ek) =
⋃
n∈N

˚̌ �⋂
k≥n

C \ σ(ek) =
⋃
n∈N

˚̧ �⋂
k≥n

ρ(ek).

So, ∃n0 ∈ N such that z ∈
˚̋ �⋂

k≥n0

ρ(ek). Then, ∃ε > 0 such thatB(z, ε) ⊆
⋂

k≥n0

ρ(ek).

Hence, for all k ≥ n0, ek − z is invertible.
Moreover, asB(z, ε) ⊆

⋂
k≥n0

ρ(ek), ∀k ≥ n0, d(0, σ((ek − z)−1)) ≥ ε.

As
∥.∥

en −→ e
n→∞

, ∃N ≥ n0 such that ∀n ≥ N, ‖en − e‖ ≤ ε
2
.

So, we have :

r((eN − z)−1(eN − e))

1.4.8
↓
≤ r((eN − z)−1)r(eN − e)

≤ 1

d(0, σ((eN − z)−1))
‖eN − e‖

≤
ε⧸2
ε

=
1

2
< 1.

So, by proposition 1.4.5, 1 + (eN − z)−1(eN − e) is invertible.
But, e− z = e− eN + eN − z = ((eN − z)−1(e− eN) + 1)(eN − z).
So, as eN − z is also invertible, e− z is invertible.
Hence, z 6∈ σ(e). So the contrapositive gives : z ∈ σ(e) ⇒ z ∈

⋂
n∈N

⋃
k≥n

σ(ek).
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Then, we showed σ(e) ⊆
⋂
n∈N

⋃
k≥n

σ(ek). ■

COROLLARY 1.5.3 :
Let e ∈ B. Let (en)n∈N ∈ BN be a sequence such that

∥.∥
en −→ e

n→∞
. Then :

σ(e) =
⋂
n∈N

⋃
k≥n

σ(ek).
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2 Application

2.1 Some reminders on Laurent series
LEMMA 2.1.1 :
Let f : C (0, R1, R2) → C holomorphic. Then

∀r1, r2 ∈ ]R1, R2[,

∫
Γr1

f(z)dz =

∫
Γr2

f(z)dz

PROOF :
Let J : R ∈]R1, R2[ 7→

∫
ΓR
f(z)dz.

Let g the holomorphic map defined by ∀z ∈ C (0, R1, R2), g(z) := zf(z).
LetR ∈]R1, R2[. With the parametrization of ΓR, z = Reit for t ∈ [0, 2π], we have :

J(R) = i

∫ 2π

0

g(Reit)dt

So, by differentiation under integral sign theorem, we have J differentiable and

∀R ∈ ]R1, R2[, J
′(R) = i

∫ 2π

0

eitg′(Reit)dt =
1

R

∫
ΓR

g′(z)dz

But, we also have, as the integral of a derivative on a closed path,

∀R ∈ ]R1, R2[,

∫
ΓR

g′(z)dz = 0, i.e.J ′(R) = 0

So, J is constant. ■
PROPOSiTiON 2.1.2 : LAURENT SERiES
Let f : C (0, R1, R2) → C holomorphic.

Then, there exists a sequence (an)n∈Z ⊆ C such that ∀z ∈ C (0, R1, R2), f(z) =
+∞∑

n=−∞
anz

n.

Moreover, this series normally converges on all compact include in C (0, R1, R2).

PROOF :
Let λ ∈ C (0, R1, R2).
If we consider the following map :

g : C (0, R1, R2) −→ C

z 7−→
®
f ′(λ) si z = λ
f(z)−f(λ)

z−λ
si z 6= λ

The map g is continuous and its restriction on C (0, R1, R2)\{λ} is holomorphic. So, we can
apply the below lemma. We can set r1, r2 such thatR1 < r1 < |λ| < r2 < R2 and so, we have∫

Γr2

g(z)dz −
∫
Γr1

g(z)dz = 0

But, Ind(λ,Γr1) = 0 and Ind(λ,Γr2) = 1. It means that 1
2iπ

(∫
Γr2

dz
z−λ

−
∫
Γr1

dz
z−λ

)
= 1.

And, by those two equalites, we can deduce that :

f(λ) =
1

2iπ

(∫
Γr2

f(z)

z − λ
dz −

∫
Γr1

f(z)

z − λ
dz

)
(1)
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However, for z ∈ C such that |z| = r2 > |λ| i.e.
∣∣λ
z

∣∣ < 1, we have :

1

z − λ
=

1

z
× 1

1− λ
z

=
1

z

+∞∑
n=0

λn

zn
=

+∞∑
n=0

λn

zn+1
hence, f(z)

z − λ
=

+∞∑
n=0

f(z)

zn+1
λn

For the same reason, for z ∈ C such that |z| = r1 < |λ| i.e.
∣∣λ
z

∣∣ > 1, we have :

1

z − λ
=

1

λ
× −1

1− z
λ

=
−1

λ

+∞∑
n=0

zn

λn
= −

+∞∑
n=0

znλ−(n+1) = −
−1∑

n=−∞

λn

zn+1

Hence,
f(z)

z − λ
= −

−1∑
n=−∞

f(z)

zn+1
λn

So, by (1) and the below lemma (applied to z 7→ f(z)
zn+1 holomrphic on C (0, R1, R2)), we have

f(λ) =
+∞∑

n=−∞

anλ
n where ∀n ∈ Z, an =

1

2iπ

∫
Γr

f(z)

zn+1
dz independantly of the choice of r ∈ ]R1, R2[.

As power series are normally convergent on all compacts included on their convergence disk,
we can deduce that

∑
n∈Z

anz
n normally converges on all compact include on C (0, R1, R2). ■

PROPOSiTiON 2.1.3 :
Let C (0, R1, R2) ⊆ C such that C ⊆ C (0, R1, R2) and f ∈ H(C (0, R1, R2)).
Then f has an absolutely convergent Fourier series.

PROOF :
The map f is holomorphic on the annulus, so by the below proposition, f can be expanded in
Laurent series. So there exists (an)n∈N ⊆ C such that

∀z ∈ C (0, R1, R2), f(z) =
∑
n∈Z

anz
n

As C is a compact include in C (0, R1, R2), the series
∑
n∈Z

an is normally convergent.

So, the family (an)n∈Z is summable. But, we have :

∀n ∈ Z, an =
1

2iπ

∮
C

f(z)

zn+1
dz =

↑
z=eiθ

1

2iπ

∫ π

−π

f(eiθ)

ei(n+1)θ
ieiθdθ =

1

2π

∫ π

−π

f(eiθ)e−inθdθ = cn(f)

As
∑
n∈Z

an is absolutely convergent, then
∑

n∈Z cn(f) is absolutely convergent. And so, f has an

absolutely convergent Fourier series. ■

12



2.2 Results on ℓ1(Z)‑space
DEFiNiTiON 2.2.1 : (ℓ1(Z)‑SPACE)
The ℓ1(Z) space is defined by :

ℓ1(Z) :=

{
T = (tk)k∈Z ∈ CZ, such that ‖T‖1 =

+∞∑
k=−∞

|tk| < +∞

}
PROPOSiTiON 2.2.2 :
The space ℓ1(Z) is a Banach algebra in which the product of two elements is defined by convo‑
lution :

∀S = (sk)k∈Z, T = (tk)k∈Z ∈ ℓ1(Z), TS := (pk)k∈Z where ∀k ∈ Z, pk =
+∞∑

j=−∞

tjsk−j

REMARK We can also write, for all k in Z, pk =
+∞∑

j=−∞
tjsk−j =

∑
j+l=k

tjsl

PROOF :

— Let us show that (ℓ1(Z), ‖.‖) is complete. Let (Tn)n∈Z a Cauchy sequence of ℓ1(Z). Then :

∀ε > 0, ∃N ∈ N, ∀p, q ≥ N, ‖Tp − Tq‖1 ≤ ε (∗)

i.e.
+∞∑

k=−∞

|Tp,k − Tq,k| ≤ ε

In particular, ∀ε > 0, ∃N ∈ N, ∀p, q ≥ N, ∀k ∈ Z, |Tp,k − Tq,k| ≤ ε.
So, for all k in Z, (Tn,k)n∈N is a Cauchy sequence in (C, |.|) which is complete. Then,
(Tn,k)n∈N converges, we denote Tk ∈ C its limit. Let T := (Tk)k∈Z.
But, (∗)with ε = 1 > 0 gives :

∃N ∈ N, ∀p, q ≥ N, ‖Tp − Tq‖1 ≤ 1

LetK ∈ N. Then, ∀p ≥ N,
K∑

k=−K

|Tp,k − TN,k| ≤ 1.

So, when p goes to+∞, we have :
K∑

k=−K

|Tk − TN,k|︸ ︷︷ ︸
|Tk|−|TN,k|≤

≤ 1.

So,
K∑

k=−K

|Tk| ≤
K∑

k=−K

|TN,k|+ 1 ≤
+∞∑

k=−∞
|TN,k|+ 1 = ‖TN‖1.

So,
∑

|Tk| converges i.e. T ∈ ℓ1(Z).
Then, when q goes to+∞ in (∗), we have :

∀ε > 0, ∃N ∈ N, ∀p ≥ N, ‖Tp − T‖1 ≤ ε

This means
∥.∥1

Tn −→ T
n→∞

.
Hence, (ℓ1(Z), ‖.‖1) is a Banach space.

— Let us show that the convolution is well defined.
As T ∈ ℓ1(Z), tk →

|k|→+∞
0, and then (tk)k∈N is bounded by a constantM ∈ R.
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So, for all j ∈ Z, for all k ∈ Z, |tjsk−j| ≤ M |sk−j| and then, as S ∈ ℓ1(Z), we have
(tjsk−j)j∈Z ∈ ℓ1(Z) i.e. (tjsk−j)j∈Z is summable.
But, we have

∀j ∈ Z,
∑
k∈Z

|tjsk−j| = |tj|
∑
k∈Z

|sk−j| = |tj|
∑
k∈Z

|sk|

So, for all j ∈ Z,
∑
k∈Z

|tjsk−j| converges and its sum is
+∞∑

k=−∞
|tjsk−j| = |tj| ‖s‖1 .

Moreover,
∑
j∈Z

+∞∑
k=−∞

|tjsk−j| = ‖s‖1
∑
j∈Z

|tj|. So,
∑
j∈Z

+∞∑
k=−∞

|tjsk−j| converges and its sum is
+∞∑

j=−∞

+∞∑
k=−∞

|tjsk−j| = ‖s‖1 ‖t‖1.

Hence, by Fubini’s theorem, (tjsk−j)k,j∈Z is summable and :

∑
(j,k)∈Z2

|tjsk−j| =
∑
k∈Z

(∑
j∈Z

|tj| |sk−j|

)
= ‖t‖1 ‖s‖1 < +∞

Then, as ∀k ∈ Z,

∣∣∣∣∣ +∞∑
j=−∞

tjsk−j

∣∣∣∣∣ ≤ +∞∑
j=−∞

|tj| |sk−j| , (pk)k∈Z ∈ ℓ1(Z).

So, the convolution of T and S is well defined in ℓ1(Z) and we have :

‖TS‖1 =
+∞∑

k=−∞

∣∣∣∣∣
+∞∑

j=−∞

tjsk−j

∣∣∣∣∣ ≤
+∞∑

k=−∞

(
+∞∑

j=−∞

|tj| |sk−j|

)
= ‖T‖1 ‖S‖1

— Let us show that the convolution is associative.
LetR = (rk)k∈Z, S = (sk)k∈Z, T = (tk)k∈Z ∈ ℓ1(Z). Then, for all k in Z :

(R(ST ))k =
∑
j+l=k

rj(ST )l

=
∑
j+l=k

tj
∑
i+h=l

sith

=
∑

j+i+h=k

rjsith

=
∑

l+h=k

(∑
j+i=l

rjsi

)
th

=
∑

l+h=k

(RS)lth

= ((RS)T )k

Hence,R(ST ) = (RS)T . So, the convolution is associative.

■
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PROPOSiTiON 2.2.3 :
The space ℓ1(Z) is commutative.

PROOF :
Let T, S ∈ ℓ1(Z), TS = (pk)k∈Z and ST = (qk)k∈Z. Let k ∈ Z.

pk =
∑
j∈Z

tjsk−j

u=k−j

↓
=

∑
u∈Z

tk−usu =
∑
u∈Z

sutk−u = qk

So, for all k ∈ N, pk = qk, i.e. TS = ST ■

NOTATiON We will write B for ℓ1(Z) in the remainder of the document

2.3 Wiener’s theorem
REMARK We can identifyR⧸2πZ and T := {z ∈ C, |z| = 1}.
Indeed, the following map defines an isomorphism betweenR⧸2πZ and T :

ψ : R⧸2πZ −→ T
θ 7−→ eiθ

DEFiNiTiON 2.3.1 : (EXPONENTiAL FAMiLY)
For all k ∈ Z, Let us define : ek : θ ∈ R 7→ eikθ ∈ T.
We will call (ek)k∈Z the exponential family.

DEFiNiTiON 2.3.2 : (FOURiER COEFFiCiENTS)
For all f ∈ L1(T), we call Fourier coefficients of f the following sequence (f̂(k))k∈Z defined
by :

∀k ∈ Z, f̂(k) :=
1

2π

π∫
−π

f(θ)e−ikθdθ

DEFiNiTiON 2.3.3 : (FOURiER SERiES)
For all f ∈ L1(T), we can associate the following series called Fourier series of f :∑

k∈Z

f̂(k)ek

NOTATiON For T = (τk)k∈Z ∈ B, we denote∆T :=
∞∑

k=−∞
τkek.

PROPOSiTiON 2.3.4 :
Let T = (τk)k∈Z ∈ B. For all θ ∈ R,∆T (θ) is an absolutely convergent series.

PROOF :
Let θ ∈ R. As T ∈ B,

∞∑
k=−∞

|τkek(θ)| =
∞∑

k=−∞

|τk| |ek(θ)|︸ ︷︷ ︸
=1

< +∞

■
PROPOSiTiON 2.3.5 :
Let T = (τk)k∈Z, S = (sk)k∈Z ∈ B.
Then, for all θ ∈ R,∆TS(θ) = ∆T (θ)∆S(θ).
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PROOF :
Let θ ∈ R.
As T, S ∈ B, TS := (pk)k∈Z ∈ B, the two series∆T (θ) and∆S(θ) are absolutely convergent.
So the Cauchy product of the two series converges.So, we have :

∆T (θ)∆S(θ) =

(
∞∑

k=−∞

τkek(θ)

)(
∞∑

k=−∞

skek(θ)

)

=
∞∑

k=−∞

∞∑
j=−∞

τjej(θ)sk−jek−j(θ)

=
∞∑

k=−∞

∞∑
j=−∞

τjsk−jek(θ)

=
∞∑

k=−∞

pkek(θ)

= ∆TS(θ)

■
PROPOSiTiON 2.3.6 :
Let T = (τk)k∈Z ∈ B. Then, σ(T ) = ∆T (R).

PROOF :

i) Let us suppose that ∆T has an analytic continuation on a neighbourhood of C that we
denote V . Let us denote f this continuation.
Let ζ 6∈ ∆T (R).
Then, as f is continuous, there exists V ′ ⊆ V such that :

C ⊆ V ′ and ∀z ∈ V ′, f(z)− ζ 6= 0 i.e. (f − ζ)(z) 6= 0

Hence, g : z ∈ V ′ 7→ (f(z) − ζ)−1 is well defined and holomorphic. So, by proposition
2.1.3, g has an absolutely convergent Fourier series.
Let us denote R := (ĝ(n))n∈Z. Then, we have R ∈ B and R(T − ζ) = (T − ζ)R = 1.
Hence, T − ζ is invertible. Then, ζ 6∈ σ(T ).
So we showed σ(T ) ⊆ ∆T (R).
Converserly, if ζ ∈ ∆T (R) there exists z ∈ R such that ζ = ∆T (z) i.e.∆T (z)− ζ = 0 then
T − ζ is not invertible. So,∆T (R) ⊆ σ(T ).

ii) Now, we consider the general case.
For all n ∈ N, let Tn := (τn,k)k∈Z where

τn,k = τk if k ∈ J−n, nK
0 else

Then, as trignometric polynomials, the Tn have an analytic continuation on a neighbou‑
rhood of C . So, we can apply the first point to them. Moreover :

16



‖T − Tn‖ =

∥∥∥∥∥ ∑
k≤−n−1

τk +
∑

k≥n+1

τk

∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

k≤−(n+1)

τk

∥∥∥∥∥∥+
∥∥∥∥∥ ∑
k≥n+1

τk

∥∥∥∥∥
≤

∑
k≤−(n+1)

|τk|︸ ︷︷ ︸
rest of a convergent series

+
∑

k≥n+1

|τk|︸ ︷︷ ︸
rest of a convergent series

Hence, ‖T − Tn‖ −→
n→∞

0.

Moreover, with a similar proof, we can show that :

∀θ ∈ R, |∆T (θ)−∆Tn(θ)| ≤
∑

k≤−(n+1)

|τk|+
∑

k≥n+1

|τk| −→
n→+∞

0 independantly of θ

So, (∆Tn)n∈N uniformly converges onR towards∆T .
Then, by corollary 1.5.3,

σ(T ) =
⋂
n∈N

⋃
k≥n

σ(Tk)
first point

↓
=

⋂
n∈N

⋃
k≥n

∆Tk
(R)

Let us show that
⋂
n∈N

⋃
k≥n

∆Tk
(R) = ∆T (R) :

— Let y ∈
⋂
n∈N

⋃
k≥n

∆Tk
(R).

Then, ∀n ∈ N, y ∈
⋃
k≥n

∆Tk
(R).

So, let n ∈ N∗, ∃kn ≥ n, ∃xn ∈ R such that |y −∆Tk
(xn)| ≤ 1

n
.

As the maps ∆Tk
are 2π‑periodic, we can suppose that (xn)n∈N∗ ⊆ [0, 2π]. So,

(xn)n∈N∗ is a sequence in a compact set so it admits a convergent subsequence :
there exist ϕ : N∗ 7→ N∗ an increasing map and x in [0, 2π] such that xϕ(n) −→

n→∞
x.

Hence, as (∆Tk
)k∈N converges uniformely towards∆T on [0, 2π], we have :

y = lim
n→∞

∆Tkϕ(n)
(xϕ(n)) = ∆T (x) ∈ ∆T (R)

— Let y ∈ ∆T (R). Then, there exists x ∈ R such that

y = ∆T (x) =
+∞∑

k=−∞

τke
ikx

= lim
N→+∞

N∑
k=−N

τke
ikx

= lim
N→+∞

∆TN
(x)

∈
⋂
n∈N

⋃
k≥n

∆Tk
(R)

So,∆T (R) ⊆
⋂
n∈N

⋃
k≥n

∆Tk
(R).
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Then we showed that
σ(T ) =

⋂
n∈N

⋃
k≥n

∆Tk
(R) = ∆T (R)

■
THEOREM 2.3.7 : WiENER’S THEOREM
Let f : R 7→ C be a 2π‑periodic continuous map.
If f has an absolutely convergent Fourier series and does not vanish anywhere, then f−1 has an
absolutely convergent Fourier series.

PROOF :
As f has an absolutely convergent Fourier series, T := (f̂(n))n∈Z ∈ B and we have f = ∆T

almost everywhere because f is continuous. Hence, thanks to proposition 2.3.6, we have :

σ(T ) = ∆T (R) = f(R)

So, since f does not vanish anywhere, 0 6∈ f(R) = σ(T ). Then, T − 0 = T is invertible. Let us
denote S its inverse. Then, by proposition 2.3.5,

f∆S = ∆T∆S = ∆TT−1 = ∆1B = e0 = 1

As the usual product onmaps is commutative, f is invertible and f−1 = ∆S .
Hence, f−1 has an absolutely convergent Fourier series. ■
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